File size: 1,598 Bytes
2452e55 747931d 2452e55 747931d defde6d 747931d 2452e55 defde6d 747931d 2452e55 defde6d 747931d 2452e55 747931d 2452e55 747931d defde6d 747931d 2452e55 747931d 2452e55 defde6d 2452e55 747931d 2452e55 747931d 2452e55 747931d defde6d 747931d 2452e55 747931d 2452e55 747931d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: transformers
model_name: LinalgZero-SFT
tags:
- generated_from_trainer
- trl
- sft
- unsloth
licence: license
---
# Model Card for LinalgZero-SFT
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="atomwalk12/LinalgZero-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/walks/huggingface/runs/wur5q4sr)
This model was trained with SFT.
### Framework versions
- TRL: 0.22.2
- Transformers: 4.56.2
- Pytorch: 2.9.1
- Datasets: 4.4.1
- Tokenizers: 0.22.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |