FIRE-deberta-v3-small-5epochs
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5989
- Accuracy: 0.8864
- F1: 0.8864
- Precision: 0.8864
- Recall: 0.8864
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.4506 | 1.0 | 1091 | 0.5686 | 0.8791 | 0.8791 | 0.8791 | 0.8791 |
| 0.607 | 2.0 | 2182 | 0.5989 | 0.8864 | 0.8864 | 0.8864 | 0.8864 |
| 1.1603 | 3.0 | 3273 | 0.7154 | 0.8828 | 0.8828 | 0.8828 | 0.8828 |
| 0.541 | 4.0 | 4364 | 0.6804 | 0.8608 | 0.8608 | 0.8608 | 0.8608 |
| 0.0009 | 5.0 | 5455 | 0.7897 | 0.8718 | 0.8718 | 0.8718 | 0.8718 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for avinasht/FIRE-deberta-v3-small-5epochs
Base model
microsoft/deberta-v3-small