--- library_name: transformers license: mit base_model: microsoft/deberta-v3-small tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FIRE-deberta-v3-small-5epochs results: [] --- # FIRE-deberta-v3-small-5epochs This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5989 - Accuracy: 0.8864 - F1: 0.8864 - Precision: 0.8864 - Recall: 0.8864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4506 | 1.0 | 1091 | 0.5686 | 0.8791 | 0.8791 | 0.8791 | 0.8791 | | 0.607 | 2.0 | 2182 | 0.5989 | 0.8864 | 0.8864 | 0.8864 | 0.8864 | | 1.1603 | 3.0 | 3273 | 0.7154 | 0.8828 | 0.8828 | 0.8828 | 0.8828 | | 0.541 | 4.0 | 4364 | 0.6804 | 0.8608 | 0.8608 | 0.8608 | 0.8608 | | 0.0009 | 5.0 | 5455 | 0.7897 | 0.8718 | 0.8718 | 0.8718 | 0.8718 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1