Rezky Mulia Kam
commited on
Delete _multiclass_confusion_matrix.py
Browse files- _multiclass_confusion_matrix.py +0 -161
_multiclass_confusion_matrix.py
DELETED
|
@@ -1,161 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
-
from sklearn.metrics import confusion_matrix
|
| 5 |
-
import seaborn as sns
|
| 6 |
-
import matplotlib
|
| 7 |
-
matplotlib.use('Qt5Agg')
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
-
from sklearn.model_selection import train_test_split
|
| 10 |
-
import numpy as np
|
| 11 |
-
import os
|
| 12 |
-
os.environ['QT_QPA_PLATFORM'] = 'xcb'
|
| 13 |
-
|
| 14 |
-
# Define label mappings
|
| 15 |
-
label_map = {0: 'sadness', 1: 'joy', 2: 'love', 3: 'anger', 4: 'fear', 5: 'surprise'}
|
| 16 |
-
reverse_label_map = {v: k for k, v in label_map.items()} # Reverse mapping for converting labels to integers
|
| 17 |
-
|
| 18 |
-
# Load the dataset
|
| 19 |
-
df = pd.read_csv('./dataset/emotions.csv')
|
| 20 |
-
|
| 21 |
-
# Ensure the 'label' column exists
|
| 22 |
-
if 'label' not in df.columns:
|
| 23 |
-
print("Error: 'label' column is missing from the dataset.")
|
| 24 |
-
exit(1)
|
| 25 |
-
|
| 26 |
-
# Convert text labels to numeric if they're not already numeric
|
| 27 |
-
if df['label'].dtype == 'object':
|
| 28 |
-
df['label'] = df['label'].map(reverse_label_map)
|
| 29 |
-
|
| 30 |
-
# Verify label conversion
|
| 31 |
-
if df['label'].isnull().any():
|
| 32 |
-
print("Error: Some labels could not be mapped properly.")
|
| 33 |
-
exit(1)
|
| 34 |
-
|
| 35 |
-
# Sample a smaller subset for faster debugging
|
| 36 |
-
sample_size = 20000 # Adjust sample size as needed
|
| 37 |
-
df_sampled = df.sample(n=sample_size, random_state=42)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Split the sampled dataset
|
| 41 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(
|
| 42 |
-
df_sampled['text'].tolist(),
|
| 43 |
-
df_sampled['label'].tolist(),
|
| 44 |
-
test_size=0.2,
|
| 45 |
-
random_state=42
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
model_6_path = "./models/stardust_6"
|
| 49 |
-
tokenizer = AutoTokenizer.from_pretrained(model_6_path)
|
| 50 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_6_path, num_labels=6)
|
| 51 |
-
model.eval() # Set model to evaluation mode
|
| 52 |
-
|
| 53 |
-
# Define a function for tokenization and encoding
|
| 54 |
-
def tokenize_and_encode(texts, labels):
|
| 55 |
-
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 56 |
-
inputs['labels'] = torch.tensor(labels)
|
| 57 |
-
return inputs
|
| 58 |
-
|
| 59 |
-
# Create datasets with labels
|
| 60 |
-
train_dataset = tokenize_and_encode(train_texts, train_labels)
|
| 61 |
-
val_dataset = tokenize_and_encode(val_texts, val_labels)
|
| 62 |
-
|
| 63 |
-
# Move model to GPU if available
|
| 64 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 65 |
-
model.to(device)
|
| 66 |
-
|
| 67 |
-
# Move validation inputs to the device
|
| 68 |
-
val_inputs = {k: v.to(device) for k, v in val_dataset.items() if k != 'labels'}
|
| 69 |
-
val_labels = val_dataset['labels'].to(device)
|
| 70 |
-
|
| 71 |
-
def plot_classification_analysis(val_labels, val_inputs, model, label_map):
|
| 72 |
-
# Convert labels if they're one-hot encoded
|
| 73 |
-
true_labels = val_labels.argmax(dim=-1).cpu().numpy() if len(val_labels.shape) > 1 else val_labels.cpu().numpy()
|
| 74 |
-
|
| 75 |
-
with torch.no_grad():
|
| 76 |
-
# Get the raw logits from the model
|
| 77 |
-
outputs = model(**val_inputs)
|
| 78 |
-
logits = outputs.logits.cpu().numpy()
|
| 79 |
-
|
| 80 |
-
# Calculate softmax probabilities
|
| 81 |
-
probabilities = np.exp(logits) / np.exp(logits).sum(axis=1, keepdims=True)
|
| 82 |
-
predictions_softmax = np.argmax(probabilities, axis=-1)
|
| 83 |
-
|
| 84 |
-
# Convert label_map to list for plotting
|
| 85 |
-
label_map_list = list(label_map.values())
|
| 86 |
-
|
| 87 |
-
# Create figure with two subplots
|
| 88 |
-
fig, axes = plt.subplots(1, 2, figsize=(20, 8))
|
| 89 |
-
|
| 90 |
-
# First subplot: Confusion Matrix
|
| 91 |
-
cm_softmax = confusion_matrix(true_labels, predictions_softmax)
|
| 92 |
-
sns.heatmap(
|
| 93 |
-
cm_softmax,
|
| 94 |
-
annot=True,
|
| 95 |
-
fmt="d",
|
| 96 |
-
cmap="Oranges",
|
| 97 |
-
xticklabels=label_map_list,
|
| 98 |
-
yticklabels=label_map_list,
|
| 99 |
-
ax=axes[0],
|
| 100 |
-
square=True
|
| 101 |
-
)
|
| 102 |
-
axes[0].set_xlabel("Prediction")
|
| 103 |
-
axes[0].set_ylabel("Truth")
|
| 104 |
-
axes[0].set_title(f"Softmax [{sample_size}]")
|
| 105 |
-
|
| 106 |
-
# Rotate x-axis labels for better readability
|
| 107 |
-
axes[0].set_xticklabels(axes[0].get_xticklabels(), rotation=45, ha='right')
|
| 108 |
-
axes[0].set_yticklabels(axes[0].get_yticklabels(), rotation=0)
|
| 109 |
-
|
| 110 |
-
# Second subplot: Raw Logits Heatmap
|
| 111 |
-
sample_size_r = min(sample_size, logits.shape[0]) # Show up to 50 samples
|
| 112 |
-
logits_subset = logits[:sample_size_r]
|
| 113 |
-
|
| 114 |
-
sns.heatmap(
|
| 115 |
-
logits_subset,
|
| 116 |
-
annot=False,
|
| 117 |
-
cmap="Oranges",
|
| 118 |
-
cbar=True,
|
| 119 |
-
xticklabels=label_map_list,
|
| 120 |
-
yticklabels=False,
|
| 121 |
-
ax=axes[1]
|
| 122 |
-
)
|
| 123 |
-
axes[1].set_xlabel("Classes")
|
| 124 |
-
axes[1].set_ylabel("Samples")
|
| 125 |
-
axes[1].set_title(f"Logits Distribution [{sample_size}]")
|
| 126 |
-
|
| 127 |
-
# Rotate x-axis labels for better readability
|
| 128 |
-
axes[1].set_xticklabels(axes[1].get_xticklabels(), rotation=45, ha='right')
|
| 129 |
-
|
| 130 |
-
# Add color bar labels
|
| 131 |
-
for im, title in zip(axes, ['Number of Samples', 'Logit Value']):
|
| 132 |
-
cbar = im.collections[0].colorbar
|
| 133 |
-
cbar.set_label(title)
|
| 134 |
-
|
| 135 |
-
plt.tight_layout()
|
| 136 |
-
|
| 137 |
-
# Calculate and return additional metrics
|
| 138 |
-
metrics = {
|
| 139 |
-
'confusion_matrix': cm_softmax,
|
| 140 |
-
'raw_logits_stats': {
|
| 141 |
-
'mean': np.mean(logits, axis=0),
|
| 142 |
-
'std': np.std(logits, axis=0),
|
| 143 |
-
'min': np.min(logits, axis=0),
|
| 144 |
-
'max': np.max(logits, axis=0)
|
| 145 |
-
}
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
return fig, metrics
|
| 149 |
-
|
| 150 |
-
fig, metrics = plot_classification_analysis(
|
| 151 |
-
val_labels=val_labels,
|
| 152 |
-
val_inputs=val_inputs,
|
| 153 |
-
model=model,
|
| 154 |
-
label_map=label_map
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
plt.show()
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|