radeon_kernel_gemm / gemm /gemm_kernel.h
Abdennacer Badaoui
gemm radeon kernel
29547e2
raw
history blame
37.4 kB
// Pipeline GEMM kernel. This version is rushed written and may not applied to all shape.
// Currently, only selected parameters is tested. (See gemm_launcher )
#ifndef GEMM_KERNEL
#define GEMM_KERNEL
#include <cstdio>
#include <hip/amd_detail/amd_hip_runtime.h>
#include <hip/amd_detail/amd_warp_functions.h>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-attributes"
#include "../include/gpu_libs.h"
#include "../include/gpu_types.h"
#include "../src/utils/arithmetic.h"
#include "../include/clangd_workaround.h"
#include <cstdlib>
#include <cfloat>
namespace gemm_kernel {
template <typename data_type, int BATCH_SIZE> __device__ inline void read_batch(data_type *dst, const data_type *src) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == 2 * sizeof(ulong4)) {
*(reinterpret_cast<ulong4 *>(dst) + 0) = *(reinterpret_cast<const ulong4 *>(src) + 0);
*(reinterpret_cast<ulong4 *>(dst) + 1) = *(reinterpret_cast<const ulong4 *>(src) + 1);
} else if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = *reinterpret_cast<const ulong4 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = *reinterpret_cast<const ulong2 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = *reinterpret_cast<const ulong1 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint1 *>(dst) = *reinterpret_cast<const uint1 *>(src);
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = src[b];
}
}
}
template <typename data_type, int BATCH_SIZE> __device__ inline void zero_batch(data_type *dst) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = ulong4{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = ulong2{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = ulong1{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint *>(dst) = uint{};
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = 0;
}
}
}
template <typename data_type, int DST_Y, int DST_X, int SRC_Y, int SRC_X, int BLOCK_DIM, int BATCH_SIZE>
__device__ inline void load_input(data_type dst[DST_Y][DST_X], const data_type src[SRC_Y][SRC_X], const int begin_x,
const int begin_y) {
static_assert(BATCH_SIZE > 0);
/**
Consider (SRC_X % DST_X == 0) && (SRC_Y % DST_Y == 0)
Step 1:
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
Step 2:
[ ][ ][ ][ ]
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
*/
static_assert((SRC_X % BATCH_SIZE == 0) && (SRC_Y % BATCH_SIZE == 0));
static_assert((DST_X % BATCH_SIZE == 0) && (DST_Y % BATCH_SIZE == 0));
static_assert(BATCH_SIZE <= DST_X && DST_X % BATCH_SIZE == 0);
const int begin_idx = threadIdx.x * BATCH_SIZE;
const constexpr int total_elements = DST_X * DST_Y;
const constexpr int elements_per_step = BLOCK_DIM * BATCH_SIZE;
// FIXME: loop unrolling
#pragma unroll
for (int k = begin_idx; k < total_elements; k += elements_per_step) {
int l_kx = k % DST_X;
int l_ky = k / DST_X;
int g_kx = l_kx + begin_x;
int g_ky = l_ky + begin_y;
auto *dst_flatten = &dst[l_ky][l_kx];
// const auto *src_flatten = &src[g_ky][g_kx];
// read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
if (((SRC_X % DST_X == 0) || (g_kx < SRC_X)) && ((SRC_Y % DST_Y == 0) || (g_ky < SRC_Y))) {
const auto *src_flatten = &src[g_ky][g_kx];
read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
} else {
zero_batch<data_type, BATCH_SIZE>(dst_flatten);
}
}
}
template <int PM, int PN, int QM, int QN, int QK, int QUANT_SIZE, int BLOCK_SIZE, int BATCH_SIZE>
__device__ void load_scale(float s_s[PM][PN], const float sa[QK][QM], const float sb[QK][QN], const int m, const int n,
const int k) {
constexpr int total_elements = PM * PN;
constexpr int elements_per_step = BLOCK_SIZE * BATCH_SIZE;
// static_assert(PN % BATCH_SIZE)
const int begin_idx = threadIdx.x * BATCH_SIZE;
#pragma unroll
for (int idx = begin_idx; idx < total_elements; idx += elements_per_step) {
static_assert(BATCH_SIZE == 1);
int i = idx / PN;
int j = idx % PN;
if (((QM % PM == 0) || (m + i < QM)) && ((QN % PN == 0) || ((n + j) / QUANT_SIZE < QN))) {
s_s[i][j] = sa[k / QUANT_SIZE][(m + i)] * sb[k / QUANT_SIZE][(n) / QUANT_SIZE + j];
} else {
s_s[i][j] = 1.0f;
}
}
}
// don't use __builtin_readcyclecounter(), which would insert waitcnt
__device__ auto getclock() {
uint64_t clk;
asm volatile("s_memtime %0" : "=r"(clk));
return clk;
}
template <typename Elem> __global__ void check_trans(const Elem *origin, const Elem *tranposed, int m, int n) {
auto x = threadIdx.x + blockIdx.x * blockDim.x;
auto y = threadIdx.y + blockIdx.y * blockDim.y;
if (x < m && y < n) {
if (origin[x * n + y] != tranposed[y * m + x]) {
printf("Error: %d %d\n", x, y);
}
}
}
template <typename in_data_type, typename acc_data_type, typename FragC, typename FragA, typename FragB, int PM, int PN,
int BM, int BN, int BK, int FRAG_M, int FRAG_N, int FRAG_K, int WMMA_M, int WMMA_N, int WMMA_K, int WARP_M,
int WARP_N, int BLOCK_SIZE, int BATCH_SIZE, int QUANT_SIZE>
__device__ void wmma_compute(const in_data_type s_a[BM][BK + 8], const in_data_type s_b[BN][BK + 8],
const float s_s[PN][PM], FragC frag_r[FRAG_M][FRAG_N], const int comp_c_frag_m,
const int comp_c_frag_n) {
FragC frag_c[FRAG_M][FRAG_N];
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
wmma::fill_fragment(frag_c[i][j], 0.0F);
}
}
#pragma unroll
for (int k = 0; k < FRAG_K; ++k) {
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
FragA frag_a;
int s_a_row = k * WMMA_K;
int s_a_col = (comp_c_frag_m * FRAG_M + i) * WMMA_M;
wmma::load_matrix_sync(frag_a, &s_a[s_a_col][s_a_row], BK + 8);
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
FragB frag_b;
int s_b_row = k * WMMA_K;
int s_b_col = (comp_c_frag_n * FRAG_N + j) * WMMA_N;
wmma::load_matrix_sync(frag_b, &s_b[s_b_col][s_b_row], BK + 8);
wmma::mma_sync(frag_c[i][j], frag_a, frag_b, frag_c[i][j]);
}
}
}
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
#pragma unroll
for (int k = 0; k < FragC::num_elements; ++k) {
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
int m = ((threadIdx.x & 16) >> 1) | (k & 7) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#else // CDNA3, WAVE_SIZE = 64
// int m = ((threadIdx.x & 48) >> 2) | (k & 3) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#endif
// int n = ((threadIdx.x & 15) | (comp_c_frag_n * FRAG_N + j) * WMMA_N) / QUANT_SIZE;
auto lane = threadIdx.x % 64;
int m, n;
if constexpr (WMMA_M == 32) {
// C or D i: (8 * floor(GPR_num / 4) % 32) + 4 * floor(lane / 32) + (GPR_num % 4)
// C or D j: (lane % 32)
m = (8 * (k / 4) % 32) + 4 * (lane / 32) + (k % 4);
n = lane % 32;
} else {
// C or D i: 4 * floor(lane / 16) + (GPR_num % 4)
// C or D j: (lane % 16)
m = 4 * (lane / 16) + (k % 4);
n = lane % 16;
}
m += (comp_c_frag_m * FRAG_M + i) * WMMA_M;
n += (comp_c_frag_n * FRAG_N + j) * WMMA_N;
n = n / QUANT_SIZE;
// if(threadIdx.x == 192 && blockIdx.x ==0 && blockIdx.y == 0 && blockIdx.z == 0)
// printf("m: %d, n: %d\n", m, n);
float scale = s_s[n][m];
frag_r[i][j].x[k] += (acc_data_type)scale * (acc_data_type)frag_c[i][j].x[k];
}
}
}
}
__device__ rocwmma::bfloat16_t fast_f32tob16(float f) {
union {
float fp32;
unsigned int u32;
} u = {f};
u.u32 += 0x7fff + ((u.u32 >> 16) & 1);
auto ret = u.u32 >> 16;
return reinterpret_cast<rocwmma::bfloat16_t &>(ret);
}
template <typename acc_data_type, typename out_data_type, typename FragC, typename FragOut, int WMMA_M, int WMMA_N,
int BM, int BN, int M, int N, int FRAG_M, int FRAG_N>
__device__ inline void store_result(out_data_type c[M][N], FragC frag_r[FRAG_M][FRAG_N], const int m, const int n,
const int comp_c_frag_m, const int comp_c_frag_n) {
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
int frag_m = comp_c_frag_m * FRAG_M + i;
int frag_n = comp_c_frag_n * FRAG_N + j;
int row = m + frag_m * WMMA_M;
int col = n + frag_n * WMMA_N;
if (((M % BM == 0) || (row < M)) && ((N % BN == 0) || (col < N))) {
out_data_type *c_ptr = &c[row][col];
if constexpr (sizeof(acc_data_type) == sizeof(out_data_type)) { // split_k
auto lane = threadIdx.x % 64;
#pragma unroll
for (int k = 0; k < FragC::num_elements; ++k) {
int m, n;
if constexpr (WMMA_M == 32) {
// C or D i: (8 * floor(GPR_num / 4) % 32) + 4 * floor(lane / 32) + (GPR_num % 4)
// C or D j: (lane % 32)
m = (8 * (k / 4) % 32) + 4 * (lane / 32) + (k % 4);
n = lane % 32;
} else {
// C or D i: 4 * floor(lane / 16) + (GPR_num % 4)
// C or D j: (lane % 16)
m = 4 * (lane / 16) + (k % 4);
n = lane % 16;
}
c_ptr[m * N + n] = frag_r[i][j].x[k];;
}
// wmma::store_matrix_sync(reinterpret_cast<out_data_type *>(c_ptr), frag_r[i][j], N,
// wmma::mem_row_major);
} else if constexpr (sizeof(out_data_type) == sizeof(half)) {
FragOut frag_out;
static_assert(sizeof(half) == sizeof(out_data_type));
static_assert(FragOut::num_elements == FragC::num_elements);
for (int k = 0; k < FragOut::num_elements; ++k) {
auto reg = fast_f32tob16(frag_r[i][j].x[k]);
frag_out.x[k] = *reinterpret_cast<half *>(&reg);
}
wmma::store_matrix_sync(reinterpret_cast<half *>(c_ptr), frag_out, N, wmma::mem_row_major);
} else {
static_assert(0, "Unsupported data type for output");
}
}
}
}
}
// a dummy template to allow inlcuding this file
template <int Splitk> __global__ void reduce(uint32_t m, uint32_t n, const float *c_splitk, __hip_bfloat16 *c) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= m * n) {
return;
}
float4 sum{};
#pragma unroll
for (auto i = 0; i < Splitk; ++i) {
sum += *(float4 *)&c_splitk[i * (m * n) + tid * 4];
}
auto res =
rocwmma::make_vector(fast_f32tob16(sum.x), fast_f32tob16(sum.y), fast_f32tob16(sum.z), fast_f32tob16(sum.w));
*(decltype(res) *)&c[tid * 4] = res;
}
template<int M, int N, int SPLITK_FACTOR, int BLOCK_SIZE>
__launch_bounds__(BLOCK_SIZE)
__global__ void reduce_kernel(const float c_splitk[SPLITK_FACTOR][M][N], __hip_bfloat16 c[M][N]) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= M * N) {
return;
}
float4 sum{};
#pragma unroll
for (auto i = 0; i < SPLITK_FACTOR; ++i) {
sum += *(float4 *)&reinterpret_cast<const float*>(c_splitk)[i * (M * N) + tid * 4];
}
auto res =
rocwmma::make_vector(fast_f32tob16(sum.x), fast_f32tob16(sum.y), fast_f32tob16(sum.z), fast_f32tob16(sum.w));
*(decltype(res) *)&reinterpret_cast< __BF16_TYPE*>(c)[tid * 4] = res;
}
#ifdef PARAMETERIZE_LIBRARY
template <typename in_data_type,
typename acc_data_type, // Accumulator type (e.g., float)
typename out_data_type, // Output type (e.g., __hip_bfloat16)
int M, int N, int K, // Matrix dimensions
int BM, int BN, int BK, // Tile dimensions
int QUANT_SIZE, // Quantization block size
int BLOCK_SIZE, // Block size
int WARP_M, int WARP_N, // Warp dimensions
int LDA, int LDB,
int LOAD_BATCH_SIZE> // Load batch size for vectorized memory operations
#else
using in_data_type = __FP8_TYPE;
using out_data_type = __BF16_TYPE;
using acc_data_type = float;
// constexpr int M = 4096, N = 4096, K = 4096;
constexpr int M = 6144, N = 4608, K = 7168;
constexpr int LDA = K, LDB = K;
// constexpr int M = 512, N = 512, K = 512;
constexpr int BM = 256, BN = 128, BK = 128;
constexpr int QUANT_SIZE = 128, BLOCK_SIZE = 512;
constexpr int LOAD_BATCH_SIZE = 16;
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
constexpr int WARP_M = 4, WARP_N = 2;
#else // CDNA3, WAVE_SIZE = 64
constexpr int WARP_M = 4, WARP_N = 2;
#endif
#endif // End of parameterization
__global__ __launch_bounds__(BLOCK_SIZE) void gemm_kernel(
const in_data_type a[M][LDA], const in_data_type b[N][LDB], out_data_type c[M][N],
const float sa[ceil_div(K, QUANT_SIZE)][M / 1], // Assuming M is divisible by 1 (always true)
const float sb[ceil_div(K, QUANT_SIZE)][ceil_div(N, QUANT_SIZE)]) {
// --- Start: Derived parameters and constants ---
constexpr int WMMA_M = 16; // Fixed WMMA dimension M
constexpr int WMMA_N = 16; // Fixed WMMA dimension N
constexpr int WMMA_K = 32; // Fixed WMMA dimension K (for FP8)
// WARP_M/N define the 2D arrangement of warps in the block grid.
// These might need adjustment based on BLOCK_DIM_X/Y strategy.
// Using fixed values based on the non-parameterized version for now.
// TODO: Derive WARP_M/N from BLOCK_DIM_X/Y if a flexible strategy is needed.
constexpr int WARP_NUM = WARP_M * WARP_N; // Total warps per block
// Assertion: Check if the assumed warp layout matches the block size
static_assert(WARP_NUM * WAVE_SIZE == BLOCK_SIZE, "WARP_M * WARP_N * WAVE_SIZE must equal BLOCK_SIZE");
// Fragments per warp
constexpr int FRAG_M_PER_WARP = BM / WMMA_M / WARP_M;
constexpr int FRAG_N_PER_WARP = BN / WMMA_N / WARP_N;
constexpr int FRAG_K = BK / WMMA_K; // Fragments along K dimension tile
static_assert(BM % (WMMA_M * WARP_M) == 0, "BM must be divisible by WMMA_M * WARP_M");
static_assert(BN % (WMMA_N * WARP_N) == 0, "BN must be divisible by WMMA_N * WARP_N");
static_assert(BK % WMMA_K == 0, "BK must be divisible by WMMA_K");
static_assert(BK >= 32, "BK must be at least 32");
// --- End: Derived parameters and constants ---
constexpr int QM = M; // Dimension M for scale A
constexpr int QN = ceil_div(N, QUANT_SIZE); // Dimension N for scale B (quantized)
constexpr int QK = ceil_div(K, QUANT_SIZE); // Dimension K for scales (quantized)
constexpr int PM = BM; // Block size M for scale A * B
constexpr int PN = ceil_div(BN, QUANT_SIZE); // Block size N for scale A * B
// Ensure derived fragment counts are positive
static_assert(FRAG_M_PER_WARP > 0, "FRAG_M_PER_WARP must be positive");
static_assert(FRAG_N_PER_WARP > 0, "FRAG_N_PER_WARP must be positive");
static_assert(FRAG_K > 0, "FRAG_K must be positive");
using FragA = wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::row_major>;
using FragB = wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::col_major>;
using FragC = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, acc_data_type>;
using FragOut = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K,
half>; // Output uses half for storage via bfloat16 reinterpret
__shared__ in_data_type s_a[BM][BK + 8];
__shared__ in_data_type s_b[BN][BK + 8];
__shared__ acc_data_type s_s[PN][PM]; // Accumulator type for scales
FragC frag_r[FRAG_M_PER_WARP][FRAG_N_PER_WARP]; // Accumulator fragments
// handle splitk
a = (decltype(a))((in_data_type *)a + blockIdx.z * K);
b = (decltype(b))((in_data_type *)b + blockIdx.z * K);
c += blockIdx.z * M;
sa += blockIdx.z * QK;
sb += blockIdx.z * QK;
int tid = threadIdx.x; // Linear thread ID within the block
int wid = tid / WAVE_SIZE; // Warp ID within the block
// Spilt and compute fragments
constexpr int iteration_over_k = ceil_div(K, BK); // Use ceil_div for potentially non-divisible K
static_assert(LOAD_BATCH_SIZE > 0, "LOAD_BATCH_SIZE must be positive");
constexpr auto PIPELINE = true;
// using LoadVec = rocwmma::VecT<float, LOAD_BATCH_SIZE / sizeof(float)>;
using LoadVec = __attribute__((__vector_size__(LOAD_BATCH_SIZE))) float;
static_assert(((BK * BM) % (BLOCK_SIZE * LOAD_BATCH_SIZE)) == 0,
"BK * BM must be divisible by BLOCK_SIZE * LOAD_BATCH_SIZE");
static_assert(BK % LOAD_BATCH_SIZE == 0, "BK must be divisible by LOAD_BATCH_SIZE");
LoadVec reg_a[BK * BM / BLOCK_SIZE / LOAD_BATCH_SIZE];
LoadVec reg_b[BK * BN / BLOCK_SIZE / LOAD_BATCH_SIZE];
constexpr auto PK = ceil_div(BK, QUANT_SIZE);
static_assert(PK == 1, "PK must be 1 for now");
float reg_sa[ceil_div(PM, BLOCK_SIZE)];
float reg_sb[ceil_div(PN, BLOCK_SIZE)];
// threadblock swizzle
auto log_tile = 1;
auto block_idx_x = blockIdx.x >> log_tile;
auto block_idx_y = (blockIdx.y << log_tile) + ((blockIdx.x) & ((1 << (log_tile)) - 1));
if (block_idx_x >= ceil_div(N, BN) || block_idx_y >= ceil_div(M, BM)) {
return;
}
const int m = block_idx_y * BM;
const int n = block_idx_x * BN;
int k = 0;
auto global2reg = [&]() {
#pragma unroll
for (int reg = 0; reg < sizeof(reg_sa) / sizeof(float); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid + reg * BLOCK_SIZE;
// NOTE: don't branch here
// if (t > PM) {
// break;
// }
int i = t / PM;
int j = t % PM;
reg_sa[reg] = sa[k / QUANT_SIZE][(m + j)];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_sb) / sizeof(float); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid + reg * BLOCK_SIZE;
// NOTE: don't branch here
// if (t > PN) {
// break;
// }
int i = t / PN;
int j = t % PN;
reg_sb[reg] = sb[k / QUANT_SIZE][(n) / QUANT_SIZE + j];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_a) / sizeof(LoadVec); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
reg_a[reg] = *(LoadVec *)&a[m + i][k + j];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_b) / sizeof(LoadVec); reg++) {
// NOTE: must iter over reg to make compiler unroll the loop
// and thus be able to allocate reg_a on register instead of on scratch memroy
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
reg_b[reg] = *(LoadVec *)&b[n + i][k + j];
}
};
auto reg2lds = [&]() {
#pragma unroll
for (int rega = 0; rega < sizeof(reg_sa) / sizeof(float); rega++) {
int ta = tid + rega * BLOCK_SIZE;
int j = ta % PM;
#pragma unroll
for (int regb = 0; regb < sizeof(reg_sb) / sizeof(float); regb++) {
int tb = tid + regb * BLOCK_SIZE;
int i = tb % PN;
s_s[i][j] = reg_sa[rega] * reg_sb[regb];
}
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_a) / sizeof(LoadVec); reg++) {
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
*(LoadVec *)&s_a[i][j] = reg_a[reg];
}
#pragma unroll
for (int reg = 0; reg < sizeof(reg_b) / sizeof(LoadVec); reg++) {
int t = tid * LOAD_BATCH_SIZE + reg * BLOCK_SIZE * LOAD_BATCH_SIZE;
int i = t / BK;
int j = t % BK;
*(LoadVec *)&s_b[i][j] = reg_b[reg];
}
};
if constexpr (PIPELINE) {
global2reg();
}
// Initialize the output accumulator fragments to zero
#pragma unroll
for (int i = 0; i < FRAG_M_PER_WARP; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N_PER_WARP; j++) {
wmma::fill_fragment(frag_r[i][j], 0.0f); // Use float literal
}
}
if constexpr (!PIPELINE) {
global2reg();
}
reg2lds();
for (int bk = 1; bk < iteration_over_k; bk++) {
k = bk * BK;
// Calculate remaining K for boundary checks if needed (not currently used by load_input)
// const int k_rem = K - k;
// Load data into shared memory
// load_input<in_data_type, BK, BM, K, M, BLOCK_SIZE, 32>(
// s_a, a, m, k);
// load_input<in_data_type, BK, BN, K, N, BLOCK_SIZE, 32>(
// s_b, b, n, k);
// Load scales into shared memory (using acc_data_type for s_s)
// load_scale<PM, PN, QM, QN, QK, QUANT_SIZE, BLOCK_SIZE, 1>(
// s_s, sa, sb, m, n, k);
if constexpr (PIPELINE) {
global2reg();
}
__syncthreads();
// Perform matrix multiplication using WMMA
wmma_compute<in_data_type, acc_data_type, FragC, FragA, FragB, PM, PN, BM, BN, BK, FRAG_M_PER_WARP,
FRAG_N_PER_WARP, FRAG_K, WMMA_M, WMMA_N, WMMA_K, WARP_M, WARP_N, BLOCK_SIZE, LOAD_BATCH_SIZE,
QUANT_SIZE>( // Pass calculated BLOCK_SIZE and LOAD_BATCH_SIZE
s_a, s_b, s_s, frag_r, wid / WARP_N, wid % WARP_N);
__syncthreads();
if constexpr (!PIPELINE) {
global2reg();
}
// __builtin_amdgcn_sched_barrier(0);
reg2lds();
}
__syncthreads();
wmma_compute<in_data_type, acc_data_type, FragC, FragA, FragB, PM, PN, BM, BN, BK, FRAG_M_PER_WARP, FRAG_N_PER_WARP,
FRAG_K, WMMA_M, WMMA_N, WMMA_K, WARP_M, WARP_N, BLOCK_SIZE, LOAD_BATCH_SIZE,
QUANT_SIZE>( // Pass calculated BLOCK_SIZE and LOAD_BATCH_SIZE
s_a, s_b, s_s, frag_r, wid / WARP_N, wid % WARP_N);
// Store results from accumulator fragments to global memory
store_result<acc_data_type, out_data_type, FragC, FragOut, WMMA_M, WMMA_N, BM, BN, M, N, FRAG_M_PER_WARP,
FRAG_N_PER_WARP>(c, frag_r, block_idx_y * BM, block_idx_x * BN, wid / WARP_N, wid % WARP_N);
};
}; // namespace gemm_kernel
HOST_CODE_BELOW
#ifndef PARAMETERIZE_LIBRARY
// Define type aliases to match those in the namespace
using fp8_type = gemm_kernel::in_data_type; // __hip_fp8_e4m3
using fp16_type = gemm_kernel::out_data_type; // __hip_bfloat16
using acc_data_type = gemm_kernel::acc_data_type; // float
// Define constants to match those in the namespace
constexpr int M = gemm_kernel::M; // 4096
constexpr int N = gemm_kernel::N; // 4096
constexpr int K = gemm_kernel::K; // 4096
constexpr int BM = gemm_kernel::BM; // 256
constexpr int BN = gemm_kernel::BN; // 128
constexpr int BK = gemm_kernel::BK; // 32
constexpr int BLOCK_SIZE = gemm_kernel::BLOCK_SIZE;
constexpr int QUANT_SIZE = gemm_kernel::QUANT_SIZE; // 128
// Define derived constants for the test
constexpr int QK = K / QUANT_SIZE;
constexpr int QM = M;
constexpr int QN = N / QUANT_SIZE;
// Helper function to check HIP errors
#define CHECK_HIP_ERROR(val) check((val), #val, __FILE__, __LINE__)
template <typename T> void check(T err, const char *const func, const char *const file, const int line) {
if (err != hipSuccess) {
fprintf(stderr, "HIP Runtime Error at: %s:%d\n", file, line);
fprintf(stderr, "%s %s\n", hipGetErrorString(err), func);
exit(1);
}
}
// Define a macro to check HIP errors
#define HIP_CALL(call) \
do { \
hipError_t err = call; \
if (err != hipSuccess) { \
fprintf(stderr, "HIP Error: %s at %s:%d\n", hipGetErrorString(err), __FILE__, __LINE__); \
exit(EXIT_FAILURE); \
} \
} while (0)
// CPU matrix multiplication implementation for result verification
void cpu_gemm(const fp8_type a[K][M], const fp8_type b[K][N], fp16_type c[M][N], const float sa[QK][QM],
const float sb[QK][QN]) {
float(*rc)[N] = new float[M][N];
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
rc[m][n] = 0.0f;
}
}
for (int k = 0; k < K; ++k) {
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
float scale = sa[k / QUANT_SIZE][m] * sb[k / QUANT_SIZE][n / QUANT_SIZE];
rc[m][n] += (scale * (float)a[k][m] * (float)b[k][n]);
}
}
}
for (int m = 0; m < M; ++m) {
for (int n = 0; n < N; ++n) {
c[m][n] = (fp16_type)rc[m][n];
}
}
delete[] rc;
}
int main() {
// Allocate host memory
fp8_type(*h_a)[M] = new fp8_type[K][M];
fp8_type(*h_b)[N] = new fp8_type[K][N];
fp16_type(*h_c)[N] = new fp16_type[M][N];
fp16_type(*h_c_ref)[N] = new fp16_type[M][N];
// Allocate host memory for quantization scale factors
float(*h_sa)[QM] = new float[QK][QM];
float(*h_sb)[QN] = new float[QK][QN];
// Initialize input data
for (int i = 0; i < K; ++i) {
for (int j = 0; j < M; ++j) {
h_a[i][j] = (fp8_type)((rand() % 10000) / 10000.0f);
}
}
for (int i = 0; i < K; ++i) {
for (int j = 0; j < N; ++j) {
h_b[i][j] = (fp8_type)((rand() % 10000) / 10000.0f);
}
}
// Initialize quantization scale factors
for (int i = 0; i < QK; ++i) {
for (int j = 0; j < QM; ++j) {
h_sa[i][j] = 1.0f;
}
}
for (int i = 0; i < QK; ++i) {
for (int j = 0; j < QN; ++j) {
h_sb[i][j] = 1.0f;
}
}
// Allocate device memory
fp8_type(*d_a)[K];
fp8_type(*d_b)[K];
fp16_type(*d_c)[N];
float(*d_sa)[QM];
float(*d_sb)[QN];
CHECK_HIP_ERROR(hipMalloc(&d_a, K * M * sizeof(fp8_type)));
CHECK_HIP_ERROR(hipMalloc(&d_b, K * N * sizeof(fp8_type)));
CHECK_HIP_ERROR(hipMalloc(&d_c, M * N * sizeof(fp16_type)));
CHECK_HIP_ERROR(hipMalloc(&d_sa, QK * QM * sizeof(float)));
CHECK_HIP_ERROR(hipMalloc(&d_sb, QK * QN * sizeof(float)));
// Copy data from host memory to device memory
CHECK_HIP_ERROR(hipMemcpy(d_a, h_a, K * M * sizeof(fp8_type), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_b, h_b, K * N * sizeof(fp8_type), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_sa, h_sa, QK * QM * sizeof(float), hipMemcpyHostToDevice));
CHECK_HIP_ERROR(hipMemcpy(d_sb, h_sb, QK * QN * sizeof(float), hipMemcpyHostToDevice));
// Calculate grid and block sizes - ensure coverage of the entire matrix
dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM);
dim3 block(BLOCK_SIZE);
// Ensure block size is a multiple of 32, since warp size is 32
if (BLOCK_SIZE % 32 != 0) {
printf("Error: Block size must be a multiple of warp size (32)\n");
return 1;
}
// Check if device supports required compute capability
int deviceId;
HIP_CALL(hipGetDevice(&deviceId));
hipDeviceProp_t deviceProp;
HIP_CALL(hipGetDeviceProperties(&deviceProp, deviceId));
if (deviceProp.major < 7) {
printf("Error: This kernel requires a GPU with compute capability 7.0 or higher\n");
return 1;
}
printf("Running GEMM kernel with grid(%d,%d), block(%d)...\n", grid.x, grid.y, block.x);
// Query and print kernel and device information
printf("Querying kernel and device information...\n");
// Get device properties
HIP_CALL(hipGetDeviceProperties(&deviceProp, deviceId));
printf("Device Name: %s\n", deviceProp.name);
printf("Total Global Memory: %lu bytes\n", deviceProp.totalGlobalMem);
printf("Shared Memory per Block: %lu bytes\n", deviceProp.sharedMemPerBlock);
printf("Registers per Block: %d\n", deviceProp.regsPerBlock);
printf("Warp Size: %d\n", deviceProp.warpSize);
printf("Max Threads per Block: %d\n", deviceProp.maxThreadsPerBlock);
printf("Max Threads per Multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor);
printf("Number of Multiprocessors: %d\n", deviceProp.multiProcessorCount);
// Query kernel attributes
hipFuncAttributes funcAttr;
HIP_CALL(hipFuncGetAttributes(&funcAttr, (const void *)gemm_kernel::gemm_kernel));
printf("Kernel Attributes:\n");
printf(" Shared Memory Size: %lu bytes\n", funcAttr.sharedSizeBytes);
printf(" Number of Registers: %d\n", funcAttr.numRegs);
printf(" Max Threads per Block: %d\n", funcAttr.maxThreadsPerBlock);
printf(" Local Memory Size: %lu bytes\n", funcAttr.localSizeBytes);
// Zero the C matrix before launching kernel
CHECK_HIP_ERROR(hipMemset(d_c, 0, M * N * sizeof(fp16_type)));
// Perform warmup runs
printf("Performing warmup runs...\n");
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
CHECK_HIP_ERROR(hipDeviceSynchronize());
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
CHECK_HIP_ERROR(hipDeviceSynchronize());
// Declare and create timing events
hipEvent_t start, stop;
HIP_CALL(hipEventCreate(&start));
HIP_CALL(hipEventCreate(&stop));
// Ensure device synchronization before formal timing
CHECK_HIP_ERROR(hipDeviceSynchronize());
HIP_CALL(hipEventRecord(start));
// Launch kernel
printf("Launching kernel...\n");
gemm_kernel::gemm_kernel<<<grid, block>>>(d_a, d_b, d_c, d_sa, d_sb);
// Record end time and calculate execution time
HIP_CALL(hipEventRecord(stop));
// Record end time and calculate execution time
HIP_CALL(hipEventSynchronize(stop));
float milliseconds = 0;
HIP_CALL(hipEventElapsedTime(&milliseconds, start, stop));
printf("Kernel execution time: %f ms\n", milliseconds);
// Check HIP errors
CHECK_HIP_ERROR(hipGetLastError());
// Calculate GPU performance metrics
double operations = 2.0 * M * N * K; // Each multiply-add operation counts as 2 floating-point operations
double seconds = milliseconds / 1000.0;
double tflops = (operations / seconds) / 1e12;
printf("GPU Performance: %.2f TFLOPS\n", tflops);
return 0;
// Copy results from device memory back to host memory
CHECK_HIP_ERROR(hipMemcpy(h_c, d_c, M * N * sizeof(fp16_type), hipMemcpyDeviceToHost));
// Calculate reference results
printf("Computing reference result on CPU...\n");
cpu_gemm(h_a, h_b, h_c_ref, h_sa, h_sb);
// Print the first 10 values for comparison
printf("First 10 values (GPU vs CPU):\n");
int print_count = 0;
for (int i = 0; i < M && print_count < 10; ++i) {
for (int j = 0; j < N && print_count < 10; ++j) {
printf(" [%d, %d]: GPU=%f, CPU=%f\n", i, j, (float)h_c[i][j], (float)h_c_ref[i][j]);
print_count++;
}
}
// Verify results
printf("Verifying results...\n");
int errors = 0;
float max_abs_diff = 0.0f;
float max_rel_diff = 0.0f;
struct ErrorInfo {
int row, col;
float gpu_val, cpu_val, abs_diff, rel_diff;
};
ErrorInfo first_10_errors[10];
ErrorInfo max_10_errors[10] = {};
// Add a configurable variable for the number of errors to output
int max_errors_to_output = 10; // You can modify this value as needed
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
float gpu_val = (float)h_c[i][j];
float cpu_val = (float)h_c_ref[i][j];
float abs_diff;
float rel_diff;
if (std::isnan(gpu_val) || std::isnan(cpu_val)) {
abs_diff = INFINITY;
rel_diff = INFINITY;
} else {
abs_diff = abs(gpu_val - cpu_val);
rel_diff = abs_diff / (abs(cpu_val) + FLT_EPSILON);
}
// Track max absolute and relative differences
max_abs_diff = fmaxf(max_abs_diff, abs_diff);
max_rel_diff = fmaxf(max_rel_diff, rel_diff);
// Record first 10 errors
if (errors < max_errors_to_output && (rel_diff > 1e-2 || abs_diff > 1e-3)) {
first_10_errors[errors] = {i, j, gpu_val, cpu_val, abs_diff, rel_diff};
}
// Track top 10 largest errors
if (rel_diff > 1e-2 || abs_diff > 1e-3) {
errors++;
for (int k = 0; k < max_errors_to_output; ++k) {
if (abs_diff > max_10_errors[k].abs_diff) {
for (int l = max_errors_to_output - 1; l > k; --l) {
max_10_errors[l] = max_10_errors[l - 1];
}
max_10_errors[k] = {i, j, gpu_val, cpu_val, abs_diff, rel_diff};
break;
}
}
}
}
}
// Print first 10 errors
printf("First %d errors:\n", max_errors_to_output);
for (int i = 0; i < fmin(errors, max_errors_to_output); ++i) {
printf("Error at [%d, %d]: GPU=%f, CPU=%f, AbsDiff=%f, RelDiff=%f\n", first_10_errors[i].row,
first_10_errors[i].col, first_10_errors[i].gpu_val, first_10_errors[i].cpu_val,
first_10_errors[i].abs_diff, first_10_errors[i].rel_diff);
}
// Print top 10 largest errors
printf("Top %d largest errors:\n", max_errors_to_output);
for (int i = 0; i < max_errors_to_output && max_10_errors[i].abs_diff > 0; ++i) {
printf("Error at [%d, %d]: GPU=%f, CPU=%f, AbsDiff=%f, RelDiff=%f\n", max_10_errors[i].row,
max_10_errors[i].col, max_10_errors[i].gpu_val, max_10_errors[i].cpu_val, max_10_errors[i].abs_diff,
max_10_errors[i].rel_diff);
}
printf("Max abs_diff: %f, Max rel_diff: %f\n", max_abs_diff, max_rel_diff);
if (errors == 0) {
printf("Test PASSED!\n");
} else {
printf("Test FAILED with %d errors\n", errors);
}
// Calculate performance
double flops = 2.0 * M * N * K;
double gflops = (flops * 1e-9) / (milliseconds * 1e-3);
printf("Performance: %.2f GFLOPS\n", gflops);
// Free memory
delete[] h_a;
delete[] h_b;
delete[] h_c;
delete[] h_c_ref;
delete[] h_sa;
delete[] h_sb;
HIP_CALL(hipFree(d_a));
HIP_CALL(hipFree(d_b));
HIP_CALL(hipFree(d_c));
HIP_CALL(hipFree(d_sa));
HIP_CALL(hipFree(d_sb));
HIP_CALL(hipEventDestroy(start));
HIP_CALL(hipEventDestroy(stop));
return 0;
}
#endif
#pragma clang diagnostic pop
#endif