radeon_kernel_gemm / gemm /gemm_kernel_legacy.h
Abdennacer Badaoui
gemm radeon kernel
29547e2
// Legacy version of gemm kernel, support all shape and various value of parameters (BM, BN, BK, etc.)
// It has been replace with faster pipeline version.
#pragma once
#include <cstdio>
#include "../include/gpu_libs.h"
#include "../include/gpu_types.h"
#include "../src/utils/arithmetic.h"
#include "../include/clangd_workaround.h"
#include <cstdlib>
#include <cfloat>
DEVICE_CODE_BELOW
namespace gemm_kernel_legacy {
template <typename data_type, int BATCH_SIZE>
__device__ inline void read_batch(data_type *dst, const data_type *src) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == 2 * sizeof(ulong4)) {
*(reinterpret_cast<ulong4 *>(dst) + 0) = *(reinterpret_cast<const ulong4 *>(src) + 0);
*(reinterpret_cast<ulong4 *>(dst) + 1) = *(reinterpret_cast<const ulong4 *>(src) + 1);
} else if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = *reinterpret_cast<const ulong4 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = *reinterpret_cast<const ulong2 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = *reinterpret_cast<const ulong1 *>(src);
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint1 *>(dst) = *reinterpret_cast<const uint1 *>(src);
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = src[b];
}
}
}
template <typename data_type, int BATCH_SIZE>
__device__ inline void zero_batch(data_type *dst) {
if constexpr ((sizeof(data_type) * BATCH_SIZE) == sizeof(ulong4)) {
*reinterpret_cast<ulong4 *>(dst) = ulong4{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong2)) {
*reinterpret_cast<ulong2 *>(dst) = ulong2{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(ulong1)) {
*reinterpret_cast<ulong1 *>(dst) = ulong1{};
} else if constexpr (sizeof(data_type) * BATCH_SIZE == sizeof(uint1)) {
*reinterpret_cast<uint *>(dst) = uint{};
} else {
#pragma unroll
for (int b = 0; b < BATCH_SIZE; ++b) {
dst[b] = 0;
}
}
}
template <typename data_type, int DST_Y, int DST_X, int SRC_Y, int SRC_X, int BLOCK_DIM, int BATCH_SIZE>
__device__ inline void load_input(data_type dst[DST_Y][DST_X], const data_type src[SRC_Y][SRC_X],
const int begin_x, const int begin_y) {
static_assert(BATCH_SIZE > 0);
/**
Consider (SRC_X % DST_X == 0) && (SRC_Y % DST_Y == 0)
Step 1:
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
Step 2:
[ ][ ][ ][ ]
[ ][***][ ][ ]
[ ][ ][ ][ ]
[ ][ ][ ][ ]
*/
static_assert((SRC_X % BATCH_SIZE == 0) && (SRC_Y % BATCH_SIZE == 0));
static_assert((DST_X % BATCH_SIZE == 0) && (DST_Y % BATCH_SIZE == 0));
static_assert(BATCH_SIZE <= DST_X && DST_X % BATCH_SIZE == 0);
const int begin_idx = threadIdx.x * BATCH_SIZE;
const constexpr int total_elements = DST_X * DST_Y;
const constexpr int elements_per_step = BLOCK_DIM * BATCH_SIZE;
// FIXME: loop unrolling
#pragma unroll
for (int k = begin_idx; k < total_elements; k += elements_per_step) {
int l_kx = k % DST_X;
int l_ky = k / DST_X;
int g_kx = l_kx + begin_x;
int g_ky = l_ky + begin_y;
auto *dst_flatten = &dst[l_ky][l_kx];
// const auto *src_flatten = &src[g_ky][g_kx];
// read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
if (((SRC_X % DST_X == 0) || (g_kx < SRC_X)) && ((SRC_Y % DST_Y == 0) || (g_ky < SRC_Y))) {
const auto *src_flatten = &src[g_ky][g_kx];
read_batch<data_type, BATCH_SIZE>(dst_flatten, src_flatten);
} else {
zero_batch<data_type, BATCH_SIZE>(dst_flatten);
}
}
}
template <int PM, int PN, int QM, int QN, int QK, int QUANT_SIZE, int BLOCK_SIZE, int BATCH_SIZE>
__device__ void load_scale(float s_s[PM][PN], const float sa[QK][QM], const float sb[QK][QN],
const int m, const int n, const int k) {
constexpr int total_elements = PM * PN;
constexpr int elements_per_step = BLOCK_SIZE * BATCH_SIZE;
// static_assert(PN % BATCH_SIZE)
const int begin_idx = threadIdx.x * BATCH_SIZE;
#pragma unroll
for (int idx = begin_idx; idx < total_elements; idx += elements_per_step) {
static_assert(BATCH_SIZE == 1);
int i = idx / PN;
int j = idx % PN;
if (((QM % PM == 0) || (m + i < QM)) && ((QN % PN == 0) || ((n + j) / QUANT_SIZE < QN))) {
s_s[i][j] = sa[k / QUANT_SIZE][(m + i)] * sb[k / QUANT_SIZE][(n) / QUANT_SIZE + j];
} else {
s_s[i][j] = 1.0f;
}
}
}
template <typename in_data_type, typename acc_data_type,
typename FragC, typename FragA, typename FragB,
int PM, int PN,
int BM, int BN, int BK,
int FRAG_M, int FRAG_N, int FRAG_K,
int WMMA_M, int WMMA_N, int WMMA_K,
int WARP_M, int WARP_N,
int BLOCK_SIZE, int BATCH_SIZE, int QUANT_SIZE>
__device__ void wmma_compute(
const in_data_type s_a[BK][BM],
const in_data_type s_b[BK][BN],
const float s_s[PM][PN],
FragC frag_r[FRAG_M][FRAG_N],
const int comp_c_frag_m,
const int comp_c_frag_n
) {
FragA frag_a[FRAG_K][FRAG_M];
FragB frag_b[FRAG_K][FRAG_N];
// Spilt k over BK
for (int k = 0; k < FRAG_K; ++k) {
#pragma unroll
for (int i = 0; i < FRAG_M; ++i) {
int s_a_row = k * WMMA_K;
int s_a_col = (comp_c_frag_m * FRAG_M + i) * WMMA_M;
wmma::load_matrix_sync(frag_a[k][i], &s_a[s_a_row][s_a_col], BM);
}
#pragma unroll
for (int j = 0; j < FRAG_N; ++j) {
int s_b_row = k * WMMA_K;
int s_b_col = (comp_c_frag_n * FRAG_N + j) * WMMA_N;
wmma::load_matrix_sync(frag_b[k][j], &s_b[s_b_row][s_b_col], BN);
}
}
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
FragC frag_c;
wmma::fill_fragment(frag_c, 0.0F);
#pragma unroll
for (int k = 0; k < FRAG_K; ++k) {
wmma::mma_sync(frag_c, frag_a[k][i], frag_b[k][j], frag_c);
}
#pragma unroll
for (int k = 0; k < FragC::num_elements; ++k) {
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
int m = ((threadIdx.x & 16) >> 1) | (k & 7) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#else // CDNA3, WAVE_SIZE = 64
int m = ((threadIdx.x & 48) >> 2) | (k & 3) | (comp_c_frag_m * FRAG_M + i) * WMMA_M;
#endif
int n = ((threadIdx.x & 15) | (comp_c_frag_n * FRAG_N + j) * WMMA_N) / QUANT_SIZE;
float scale = s_s[m][n];
frag_r[i][j].x[k] += (acc_data_type)scale * (acc_data_type)frag_c.x[k];
}
}
}
}
template <typename acc_data_type, typename out_data_type,
typename FragC, typename FragOut, int WMMA_M, int WMMA_N,
int BM, int BN, int M, int N, int FRAG_M, int FRAG_N>
__device__ inline void store_result(
out_data_type c[M][N],
FragC frag_r[FRAG_M][FRAG_N],
const int m,
const int n,
const int comp_c_frag_m,
const int comp_c_frag_n
) {
#pragma unroll
for (int i = 0; i < FRAG_M; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N; j++) {
int frag_m = comp_c_frag_m * FRAG_M + i;
int frag_n = comp_c_frag_n * FRAG_N + j;
int row = m + frag_m * WMMA_M;
int col = n + frag_n * WMMA_N;
if (((M % BM == 0) || (row < M)) && ((N % BN == 0) || (col < N))) {
out_data_type *c_ptr = &c[row][col];
if constexpr (sizeof(acc_data_type) == sizeof(out_data_type)) {
wmma::store_matrix_sync(reinterpret_cast<out_data_type*>(c_ptr), frag_r[i][j], N, wmma::mem_row_major);
} else if constexpr (sizeof(out_data_type) == sizeof(half)) {
FragOut frag_out;
static_assert(sizeof(half) == sizeof(out_data_type));
static_assert(FragOut::num_elements == FragC::num_elements);
for (int k=0;k<FragOut::num_elements;++k) {
__hip_bfloat16 reg = frag_r[i][j].x[k];
frag_out.x[k] = *reinterpret_cast<half*>(&reg);
}
wmma::store_matrix_sync(reinterpret_cast<half*>(c_ptr), frag_out, N, wmma::mem_row_major);
} else {
static_assert(0, "Unsupported data type for output");
}
}
}
}
}
// a dummy template to allow inlcuding this file
template<int Dummy=0>
__global__ void reduce(uint32_t m, uint32_t n, uint32_t splitk, const float *c_splitk, __hip_bfloat16 *c) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= m * n) {
return;
}
float sum = 0;
for (auto i = 0; i < splitk; ++i) {
sum += c_splitk[i * (m * n) + tid];
}
c[tid] = sum;
}
#ifdef PARAMETERIZE_LIBRARY
template <
typename in_data_type,
typename acc_data_type, // Accumulator type (e.g., float)
typename out_data_type, // Output type (e.g., __hip_bfloat16)
int M, int N, int K, // Matrix dimensions
int BM, int BN, int BK, // Tile dimensions
int QUANT_SIZE, // Quantization block size
int BLOCK_SIZE, // Block size
int WARP_M, int WARP_N // Warp dimensions
>
#else
using in_data_type = __FP8_TYPE;
using out_data_type = __BF16_TYPE;
using acc_data_type = float;
// constexpr int M = 4096, N = 4096, K = 4096;
constexpr int M = 96, N = 1024, K = 1024;
// constexpr int M = 512, N = 512, K = 512;
constexpr int BM = 64, BN = 256, BK = 32;
constexpr int QUANT_SIZE = 128, BLOCK_SIZE = 256;
#ifdef TEST_ON_RDNA4 // RDNA4, WAVE_SIZE = 32
constexpr int WARP_M = 4, WARP_N = 2;
#else // CDNA3, WAVE_SIZE = 64
constexpr int WARP_M = 2, WARP_N = 2;
#endif
#endif // End of parameterization
__global__ void gemm_kernel(
const in_data_type a[K][M],
const in_data_type b[K][N],
out_data_type c[M][N],
const float sa[ceil_div(K, QUANT_SIZE)][M / 1 ], // Assuming M is divisible by 1 (always true)
const float sb[ceil_div(K, QUANT_SIZE)][ceil_div(N, QUANT_SIZE)]
) {
// --- Start: Derived parameters and constants ---
constexpr int WMMA_M = 16; // Fixed WMMA dimension M
constexpr int WMMA_N = 16; // Fixed WMMA dimension N
constexpr int WMMA_K = 32; // Fixed WMMA dimension K (for FP8)
// WARP_M/N define the 2D arrangement of warps in the block grid.
// These might need adjustment based on BLOCK_DIM_X/Y strategy.
// Using fixed values based on the non-parameterized version for now.
// TODO: Derive WARP_M/N from BLOCK_DIM_X/Y if a flexible strategy is needed.
constexpr int WARP_NUM = WARP_M * WARP_N; // Total warps per block
// Assertion: Check if the assumed warp layout matches the block size
static_assert(WARP_NUM * WAVE_SIZE == BLOCK_SIZE, "WARP_M * WARP_N * WAVE_SIZE must equal BLOCK_SIZE");
// Fragments per warp
constexpr int FRAG_M_PER_WARP = BM / WMMA_M / WARP_M;
constexpr int FRAG_N_PER_WARP = BN / WMMA_N / WARP_N;
constexpr int FRAG_K = BK / WMMA_K; // Fragments along K dimension tile
static_assert(BM % (WMMA_M * WARP_M) == 0, "BM must be divisible by WMMA_M * WARP_M");
static_assert(BN % (WMMA_N * WARP_N) == 0, "BN must be divisible by WMMA_N * WARP_N");
static_assert(BK % WMMA_K == 0, "BK must be divisible by WMMA_K");
static_assert(BK >= 32, "BK must be at least 32");
// --- End: Derived parameters and constants ---
constexpr int QM = M; // Dimension M for scale A
constexpr int QN = ceil_div(N, QUANT_SIZE); // Dimension N for scale B (quantized)
constexpr int QK = ceil_div(K, QUANT_SIZE); // Dimension K for scales (quantized)
constexpr int PM = BM; // Block size M for scale A * B
constexpr int PN = ceil_div(BN, QUANT_SIZE); // Block size N for scale A * B
// Ensure derived fragment counts are positive
static_assert(FRAG_M_PER_WARP > 0, "FRAG_M_PER_WARP must be positive");
static_assert(FRAG_N_PER_WARP > 0, "FRAG_N_PER_WARP must be positive");
static_assert(FRAG_K > 0, "FRAG_K must be positive");
using FragA = wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::col_major>;
using FragB = wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, in_data_type, wmma::row_major>;
using FragC = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, acc_data_type>;
using FragOut = wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, half>; // Output uses half for storage via bfloat16 reinterpret
__shared__ in_data_type s_a[BK][BM];
__shared__ in_data_type s_b[BK][BN];
__shared__ acc_data_type s_s[PM][PN]; // Accumulator type for scales
FragC frag_r[FRAG_M_PER_WARP][FRAG_N_PER_WARP]; // Accumulator fragments
// handle splitk
a += blockIdx.z * K;
b += blockIdx.z * K;
c += blockIdx.z * M;
sa += blockIdx.z * QK;
sb += blockIdx.z * QK;
int tid = threadIdx.x; // Linear thread ID within the block
int wid = tid / WAVE_SIZE; // Warp ID within the block
// Initialize the output accumulator fragments to zero
#pragma unroll
for (int i = 0; i < FRAG_M_PER_WARP; i++) {
#pragma unroll
for (int j = 0; j < FRAG_N_PER_WARP; j++) {
wmma::fill_fragment(frag_r[i][j], 0.0f); // Use float literal
}
}
// Spilt and compute fragments
constexpr int iteration_over_k = ceil_div(K, BK); // Use ceil_div for potentially non-divisible K
constexpr int LOAD_BATCH_SIZE = (2 * sizeof(float4) / sizeof(in_data_type)) > 0 ? (2 * sizeof(float4) / sizeof(in_data_type)) : 1; // Ensure batch size > 0
static_assert(LOAD_BATCH_SIZE > 0, "LOAD_BATCH_SIZE must be positive");
for (int bk = 0; bk < iteration_over_k; bk++) {
const int m = blockIdx.y * BM;
const int n = blockIdx.x * BN;
const int k = bk * BK;
// Calculate remaining K for boundary checks if needed (not currently used by load_input)
// const int k_rem = K - k;
// Load data into shared memory
load_input<in_data_type, BK, BM, K, M, BLOCK_SIZE, LOAD_BATCH_SIZE>(
s_a, a, m, k);
load_input<in_data_type, BK, BN, K, N, BLOCK_SIZE, LOAD_BATCH_SIZE>(
s_b, b, n, k);
// Load scales into shared memory (using acc_data_type for s_s)
load_scale<PM, PN, QM, QN, QK, QUANT_SIZE, BLOCK_SIZE, 1>(
s_s, sa, sb, m, n, k);
__syncthreads();
// Perform matrix multiplication using WMMA
wmma_compute<in_data_type, acc_data_type, FragC, FragA, FragB,
PM, PN, BM, BN, BK, FRAG_M_PER_WARP, FRAG_N_PER_WARP, FRAG_K,
WMMA_M, WMMA_N, WMMA_K,
WARP_M, WARP_N,
BLOCK_SIZE, LOAD_BATCH_SIZE, QUANT_SIZE>( // Pass calculated BLOCK_SIZE and LOAD_BATCH_SIZE
s_a, s_b, s_s, frag_r, wid / WARP_N, wid % WARP_N);
__syncthreads();
}
// Store results from accumulator fragments to global memory
store_result<acc_data_type, out_data_type, FragC, FragOut,
WMMA_M, WMMA_N, BM, BN, M, N, FRAG_M_PER_WARP, FRAG_N_PER_WARP>(
c, frag_r, blockIdx.y * BM, blockIdx.x * BN,
wid / WARP_N, wid % WARP_N);
};
}; // namespace gemm_kernel_legacy