Commit 
							
							·
						
						c66211b
	
1
								Parent(s):
							
							1c82b01
								
Create README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,873 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            datasets:
         | 
| 3 | 
            +
            - bigscience/xP3
         | 
| 4 | 
            +
            license: bigscience-bloom-rail-1.0
         | 
| 5 | 
            +
            language:
         | 
| 6 | 
            +
            - ak
         | 
| 7 | 
            +
            - ar
         | 
| 8 | 
            +
            - as
         | 
| 9 | 
            +
            - bm
         | 
| 10 | 
            +
            - bn
         | 
| 11 | 
            +
            - ca
         | 
| 12 | 
            +
            - code
         | 
| 13 | 
            +
            - en
         | 
| 14 | 
            +
            - es
         | 
| 15 | 
            +
            - eu
         | 
| 16 | 
            +
            - fon
         | 
| 17 | 
            +
            - fr
         | 
| 18 | 
            +
            - gu
         | 
| 19 | 
            +
            - hi
         | 
| 20 | 
            +
            - id
         | 
| 21 | 
            +
            - ig
         | 
| 22 | 
            +
            - ki
         | 
| 23 | 
            +
            - kn
         | 
| 24 | 
            +
            - lg
         | 
| 25 | 
            +
            - ln
         | 
| 26 | 
            +
            - ml
         | 
| 27 | 
            +
            - mr
         | 
| 28 | 
            +
            - ne
         | 
| 29 | 
            +
            - nso
         | 
| 30 | 
            +
            - ny
         | 
| 31 | 
            +
            - or
         | 
| 32 | 
            +
            - pa
         | 
| 33 | 
            +
            - pt
         | 
| 34 | 
            +
            - rn
         | 
| 35 | 
            +
            - rw
         | 
| 36 | 
            +
            - sn
         | 
| 37 | 
            +
            - st
         | 
| 38 | 
            +
            - sw
         | 
| 39 | 
            +
            - ta
         | 
| 40 | 
            +
            - te
         | 
| 41 | 
            +
            - tn
         | 
| 42 | 
            +
            - ts
         | 
| 43 | 
            +
            - tum
         | 
| 44 | 
            +
            - tw
         | 
| 45 | 
            +
            - ur
         | 
| 46 | 
            +
            - vi
         | 
| 47 | 
            +
            - wo
         | 
| 48 | 
            +
            - xh
         | 
| 49 | 
            +
            - yo
         | 
| 50 | 
            +
            - zh
         | 
| 51 | 
            +
            - zu
         | 
| 52 | 
            +
            programming_language: 
         | 
| 53 | 
            +
            - C
         | 
| 54 | 
            +
            - C++
         | 
| 55 | 
            +
            - C#
         | 
| 56 | 
            +
            - Go
         | 
| 57 | 
            +
            - Java
         | 
| 58 | 
            +
            - JavaScript
         | 
| 59 | 
            +
            - Lua
         | 
| 60 | 
            +
            - PHP
         | 
| 61 | 
            +
            - Python
         | 
| 62 | 
            +
            - Ruby
         | 
| 63 | 
            +
            - Rust
         | 
| 64 | 
            +
            - Scala
         | 
| 65 | 
            +
            - TypeScript
         | 
| 66 | 
            +
            pipeline_tag: text-generation
         | 
| 67 | 
            +
            widget:
         | 
| 68 | 
            +
            - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
         | 
| 69 | 
            +
              example_title: "zh-en sentiment"
         | 
| 70 | 
            +
            - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
         | 
| 71 | 
            +
              example_title: "zh-zh sentiment"
         | 
| 72 | 
            +
            - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
         | 
| 73 | 
            +
              example_title: "vi-en query"
         | 
| 74 | 
            +
            - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
         | 
| 75 | 
            +
              example_title: "fr-fr query"
         | 
| 76 | 
            +
            - text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
         | 
| 77 | 
            +
              example_title: "te-en qa"
         | 
| 78 | 
            +
            - text: "Why is the sky blue?"
         | 
| 79 | 
            +
              example_title: "en-en qa"
         | 
| 80 | 
            +
            - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
         | 
| 81 | 
            +
              example_title: "es-en fable"
         | 
| 82 | 
            +
            - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
         | 
| 83 | 
            +
              example_title: "hi-en fable"
         | 
| 84 | 
            +
            model-index:
         | 
| 85 | 
            +
            - name: bloomz-3b1
         | 
| 86 | 
            +
              results:
         | 
| 87 | 
            +
              - task:
         | 
| 88 | 
            +
                  type: Coreference resolution
         | 
| 89 | 
            +
                dataset:
         | 
| 90 | 
            +
                  type: winogrande
         | 
| 91 | 
            +
                  name: Winogrande XL (xl)
         | 
| 92 | 
            +
                  config: xl
         | 
| 93 | 
            +
                  split: validation
         | 
| 94 | 
            +
                  revision: a80f460359d1e9a67c006011c94de42a8759430c
         | 
| 95 | 
            +
                metrics:
         | 
| 96 | 
            +
                - type: Accuracy
         | 
| 97 | 
            +
                  value: 53.67
         | 
| 98 | 
            +
              - task:
         | 
| 99 | 
            +
                  type: Coreference resolution
         | 
| 100 | 
            +
                dataset:
         | 
| 101 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 102 | 
            +
                  name: XWinograd (en)
         | 
| 103 | 
            +
                  config: en
         | 
| 104 | 
            +
                  split: test
         | 
| 105 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 106 | 
            +
                metrics:
         | 
| 107 | 
            +
                - type: Accuracy
         | 
| 108 | 
            +
                  value: 59.23
         | 
| 109 | 
            +
              - task:
         | 
| 110 | 
            +
                  type: Coreference resolution
         | 
| 111 | 
            +
                dataset:
         | 
| 112 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 113 | 
            +
                  name: XWinograd (fr)
         | 
| 114 | 
            +
                  config: fr
         | 
| 115 | 
            +
                  split: test
         | 
| 116 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 117 | 
            +
                metrics:
         | 
| 118 | 
            +
                - type: Accuracy
         | 
| 119 | 
            +
                  value: 53.01
         | 
| 120 | 
            +
              - task:
         | 
| 121 | 
            +
                  type: Coreference resolution
         | 
| 122 | 
            +
                dataset:
         | 
| 123 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 124 | 
            +
                  name: XWinograd (jp)
         | 
| 125 | 
            +
                  config: jp
         | 
| 126 | 
            +
                  split: test
         | 
| 127 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 128 | 
            +
                metrics:
         | 
| 129 | 
            +
                - type: Accuracy
         | 
| 130 | 
            +
                  value: 52.45
         | 
| 131 | 
            +
              - task:
         | 
| 132 | 
            +
                  type: Coreference resolution
         | 
| 133 | 
            +
                dataset:
         | 
| 134 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 135 | 
            +
                  name: XWinograd (pt)
         | 
| 136 | 
            +
                  config: pt
         | 
| 137 | 
            +
                  split: test
         | 
| 138 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 139 | 
            +
                metrics:
         | 
| 140 | 
            +
                - type: Accuracy
         | 
| 141 | 
            +
                  value: 53.61
         | 
| 142 | 
            +
              - task:
         | 
| 143 | 
            +
                  type: Coreference resolution
         | 
| 144 | 
            +
                dataset:
         | 
| 145 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 146 | 
            +
                  name: XWinograd (ru)
         | 
| 147 | 
            +
                  config: ru
         | 
| 148 | 
            +
                  split: test
         | 
| 149 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 150 | 
            +
                metrics:
         | 
| 151 | 
            +
                - type: Accuracy
         | 
| 152 | 
            +
                  value: 53.97
         | 
| 153 | 
            +
              - task:
         | 
| 154 | 
            +
                  type: Coreference resolution
         | 
| 155 | 
            +
                dataset:
         | 
| 156 | 
            +
                  type: Muennighoff/xwinograd
         | 
| 157 | 
            +
                  name: XWinograd (zh)
         | 
| 158 | 
            +
                  config: zh
         | 
| 159 | 
            +
                  split: test
         | 
| 160 | 
            +
                  revision: 9dd5ea5505fad86b7bedad667955577815300cee
         | 
| 161 | 
            +
                metrics:
         | 
| 162 | 
            +
                - type: Accuracy
         | 
| 163 | 
            +
                  value: 60.91
         | 
| 164 | 
            +
              - task:
         | 
| 165 | 
            +
                  type: Natural language inference
         | 
| 166 | 
            +
                dataset:
         | 
| 167 | 
            +
                  type: anli
         | 
| 168 | 
            +
                  name: ANLI (r1)
         | 
| 169 | 
            +
                  config: r1
         | 
| 170 | 
            +
                  split: validation
         | 
| 171 | 
            +
                  revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
         | 
| 172 | 
            +
                metrics:
         | 
| 173 | 
            +
                - type: Accuracy
         | 
| 174 | 
            +
                  value: 40.1
         | 
| 175 | 
            +
              - task:
         | 
| 176 | 
            +
                  type: Natural language inference
         | 
| 177 | 
            +
                dataset:
         | 
| 178 | 
            +
                  type: anli
         | 
| 179 | 
            +
                  name: ANLI (r2)
         | 
| 180 | 
            +
                  config: r2
         | 
| 181 | 
            +
                  split: validation
         | 
| 182 | 
            +
                  revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
         | 
| 183 | 
            +
                metrics:
         | 
| 184 | 
            +
                - type: Accuracy
         | 
| 185 | 
            +
                  value: 36.8
         | 
| 186 | 
            +
              - task:
         | 
| 187 | 
            +
                  type: Natural language inference
         | 
| 188 | 
            +
                dataset:
         | 
| 189 | 
            +
                  type: anli
         | 
| 190 | 
            +
                  name: ANLI (r3)
         | 
| 191 | 
            +
                  config: r3
         | 
| 192 | 
            +
                  split: validation
         | 
| 193 | 
            +
                  revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
         | 
| 194 | 
            +
                metrics:
         | 
| 195 | 
            +
                - type: Accuracy
         | 
| 196 | 
            +
                  value: 40.0
         | 
| 197 | 
            +
              - task:
         | 
| 198 | 
            +
                  type: Natural language inference
         | 
| 199 | 
            +
                dataset:
         | 
| 200 | 
            +
                  type: super_glue
         | 
| 201 | 
            +
                  name: SuperGLUE (cb)
         | 
| 202 | 
            +
                  config: cb
         | 
| 203 | 
            +
                  split: validation
         | 
| 204 | 
            +
                  revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
         | 
| 205 | 
            +
                metrics:
         | 
| 206 | 
            +
                - type: Accuracy
         | 
| 207 | 
            +
                  value: 75.0
         | 
| 208 | 
            +
              - task:
         | 
| 209 | 
            +
                  type: Natural language inference
         | 
| 210 | 
            +
                dataset:
         | 
| 211 | 
            +
                  type: super_glue
         | 
| 212 | 
            +
                  name: SuperGLUE (rte)
         | 
| 213 | 
            +
                  config: rte
         | 
| 214 | 
            +
                  split: validation
         | 
| 215 | 
            +
                  revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
         | 
| 216 | 
            +
                metrics:
         | 
| 217 | 
            +
                - type: Accuracy
         | 
| 218 | 
            +
                  value: 76.17
         | 
| 219 | 
            +
              - task:
         | 
| 220 | 
            +
                  type: Natural language inference
         | 
| 221 | 
            +
                dataset:
         | 
| 222 | 
            +
                  type: xnli
         | 
| 223 | 
            +
                  name: XNLI (ar)
         | 
| 224 | 
            +
                  config: ar
         | 
| 225 | 
            +
                  split: validation
         | 
| 226 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 227 | 
            +
                metrics:
         | 
| 228 | 
            +
                - type: Accuracy
         | 
| 229 | 
            +
                  value: 53.29
         | 
| 230 | 
            +
              - task:
         | 
| 231 | 
            +
                  type: Natural language inference
         | 
| 232 | 
            +
                dataset:
         | 
| 233 | 
            +
                  type: xnli
         | 
| 234 | 
            +
                  name: XNLI (bg)
         | 
| 235 | 
            +
                  config: bg
         | 
| 236 | 
            +
                  split: validation
         | 
| 237 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 238 | 
            +
                metrics:
         | 
| 239 | 
            +
                - type: Accuracy
         | 
| 240 | 
            +
                  value: 43.82
         | 
| 241 | 
            +
              - task:
         | 
| 242 | 
            +
                  type: Natural language inference
         | 
| 243 | 
            +
                dataset:
         | 
| 244 | 
            +
                  type: xnli
         | 
| 245 | 
            +
                  name: XNLI (de)
         | 
| 246 | 
            +
                  config: de
         | 
| 247 | 
            +
                  split: validation
         | 
| 248 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 249 | 
            +
                metrics:
         | 
| 250 | 
            +
                - type: Accuracy
         | 
| 251 | 
            +
                  value: 45.26
         | 
| 252 | 
            +
              - task:
         | 
| 253 | 
            +
                  type: Natural language inference
         | 
| 254 | 
            +
                dataset:
         | 
| 255 | 
            +
                  type: xnli
         | 
| 256 | 
            +
                  name: XNLI (el)
         | 
| 257 | 
            +
                  config: el
         | 
| 258 | 
            +
                  split: validation
         | 
| 259 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 260 | 
            +
                metrics:
         | 
| 261 | 
            +
                - type: Accuracy
         | 
| 262 | 
            +
                  value: 42.61
         | 
| 263 | 
            +
              - task:
         | 
| 264 | 
            +
                  type: Natural language inference
         | 
| 265 | 
            +
                dataset:
         | 
| 266 | 
            +
                  type: xnli
         | 
| 267 | 
            +
                  name: XNLI (en)
         | 
| 268 | 
            +
                  config: en
         | 
| 269 | 
            +
                  split: validation
         | 
| 270 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 271 | 
            +
                metrics:
         | 
| 272 | 
            +
                - type: Accuracy
         | 
| 273 | 
            +
                  value: 57.31
         | 
| 274 | 
            +
              - task:
         | 
| 275 | 
            +
                  type: Natural language inference
         | 
| 276 | 
            +
                dataset:
         | 
| 277 | 
            +
                  type: xnli
         | 
| 278 | 
            +
                  name: XNLI (es)
         | 
| 279 | 
            +
                  config: es
         | 
| 280 | 
            +
                  split: validation
         | 
| 281 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 282 | 
            +
                metrics:
         | 
| 283 | 
            +
                - type: Accuracy
         | 
| 284 | 
            +
                  value: 56.14
         | 
| 285 | 
            +
              - task:
         | 
| 286 | 
            +
                  type: Natural language inference
         | 
| 287 | 
            +
                dataset:
         | 
| 288 | 
            +
                  type: xnli
         | 
| 289 | 
            +
                  name: XNLI (fr)
         | 
| 290 | 
            +
                  config: fr
         | 
| 291 | 
            +
                  split: validation
         | 
| 292 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 293 | 
            +
                metrics:
         | 
| 294 | 
            +
                - type: Accuracy
         | 
| 295 | 
            +
                  value: 55.78
         | 
| 296 | 
            +
              - task:
         | 
| 297 | 
            +
                  type: Natural language inference
         | 
| 298 | 
            +
                dataset:
         | 
| 299 | 
            +
                  type: xnli
         | 
| 300 | 
            +
                  name: XNLI (hi)
         | 
| 301 | 
            +
                  config: hi
         | 
| 302 | 
            +
                  split: validation
         | 
| 303 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 304 | 
            +
                metrics:
         | 
| 305 | 
            +
                - type: Accuracy
         | 
| 306 | 
            +
                  value: 51.49
         | 
| 307 | 
            +
              - task:
         | 
| 308 | 
            +
                  type: Natural language inference
         | 
| 309 | 
            +
                dataset:
         | 
| 310 | 
            +
                  type: xnli
         | 
| 311 | 
            +
                  name: XNLI (ru)
         | 
| 312 | 
            +
                  config: ru
         | 
| 313 | 
            +
                  split: validation
         | 
| 314 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 315 | 
            +
                metrics:
         | 
| 316 | 
            +
                - type: Accuracy
         | 
| 317 | 
            +
                  value: 47.11
         | 
| 318 | 
            +
              - task:
         | 
| 319 | 
            +
                  type: Natural language inference
         | 
| 320 | 
            +
                dataset:
         | 
| 321 | 
            +
                  type: xnli
         | 
| 322 | 
            +
                  name: XNLI (sw)
         | 
| 323 | 
            +
                  config: sw
         | 
| 324 | 
            +
                  split: validation
         | 
| 325 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 326 | 
            +
                metrics:
         | 
| 327 | 
            +
                - type: Accuracy
         | 
| 328 | 
            +
                  value: 47.83
         | 
| 329 | 
            +
              - task:
         | 
| 330 | 
            +
                  type: Natural language inference
         | 
| 331 | 
            +
                dataset:
         | 
| 332 | 
            +
                  type: xnli
         | 
| 333 | 
            +
                  name: XNLI (th)
         | 
| 334 | 
            +
                  config: th
         | 
| 335 | 
            +
                  split: validation
         | 
| 336 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 337 | 
            +
                metrics:
         | 
| 338 | 
            +
                - type: Accuracy
         | 
| 339 | 
            +
                  value: 42.93
         | 
| 340 | 
            +
              - task:
         | 
| 341 | 
            +
                  type: Natural language inference
         | 
| 342 | 
            +
                dataset:
         | 
| 343 | 
            +
                  type: xnli
         | 
| 344 | 
            +
                  name: XNLI (tr)
         | 
| 345 | 
            +
                  config: tr
         | 
| 346 | 
            +
                  split: validation
         | 
| 347 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 348 | 
            +
                metrics:
         | 
| 349 | 
            +
                - type: Accuracy
         | 
| 350 | 
            +
                  value: 37.23
         | 
| 351 | 
            +
              - task:
         | 
| 352 | 
            +
                  type: Natural language inference
         | 
| 353 | 
            +
                dataset:
         | 
| 354 | 
            +
                  type: xnli
         | 
| 355 | 
            +
                  name: XNLI (ur)
         | 
| 356 | 
            +
                  config: ur
         | 
| 357 | 
            +
                  split: validation
         | 
| 358 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 359 | 
            +
                metrics:
         | 
| 360 | 
            +
                - type: Accuracy
         | 
| 361 | 
            +
                  value: 49.04
         | 
| 362 | 
            +
              - task:
         | 
| 363 | 
            +
                  type: Natural language inference
         | 
| 364 | 
            +
                dataset:
         | 
| 365 | 
            +
                  type: xnli
         | 
| 366 | 
            +
                  name: XNLI (vi)
         | 
| 367 | 
            +
                  config: vi
         | 
| 368 | 
            +
                  split: validation
         | 
| 369 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 370 | 
            +
                metrics:
         | 
| 371 | 
            +
                - type: Accuracy
         | 
| 372 | 
            +
                  value: 53.98
         | 
| 373 | 
            +
              - task:
         | 
| 374 | 
            +
                  type: Natural language inference
         | 
| 375 | 
            +
                dataset:
         | 
| 376 | 
            +
                  type: xnli
         | 
| 377 | 
            +
                  name: XNLI (zh)
         | 
| 378 | 
            +
                  config: zh
         | 
| 379 | 
            +
                  split: validation
         | 
| 380 | 
            +
                  revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
         | 
| 381 | 
            +
                metrics:
         | 
| 382 | 
            +
                - type: Accuracy
         | 
| 383 | 
            +
                  value: 54.18
         | 
| 384 | 
            +
              - task:
         | 
| 385 | 
            +
                  type: Program synthesis
         | 
| 386 | 
            +
                dataset:
         | 
| 387 | 
            +
                  type: openai_humaneval
         | 
| 388 | 
            +
                  name: HumanEval
         | 
| 389 | 
            +
                  config: None
         | 
| 390 | 
            +
                  split: test
         | 
| 391 | 
            +
                  revision: e8dc562f5de170c54b5481011dd9f4fa04845771
         | 
| 392 | 
            +
                metrics:
         | 
| 393 | 
            +
                - type: Pass@1
         | 
| 394 | 
            +
                  value: 6.29
         | 
| 395 | 
            +
                - type: Pass@10
         | 
| 396 | 
            +
                  value: 11.94
         | 
| 397 | 
            +
                - type: Pass@100
         | 
| 398 | 
            +
                  value: 19.06
         | 
| 399 | 
            +
              - task:
         | 
| 400 | 
            +
                  type: Sentence completion
         | 
| 401 | 
            +
                dataset:
         | 
| 402 | 
            +
                  type: story_cloze
         | 
| 403 | 
            +
                  name: StoryCloze (2016)
         | 
| 404 | 
            +
                  config: "2016"
         | 
| 405 | 
            +
                  split: validation
         | 
| 406 | 
            +
                  revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
         | 
| 407 | 
            +
                metrics:
         | 
| 408 | 
            +
                - type: Accuracy
         | 
| 409 | 
            +
                  value: 87.33
         | 
| 410 | 
            +
              - task:
         | 
| 411 | 
            +
                  type: Sentence completion
         | 
| 412 | 
            +
                dataset:
         | 
| 413 | 
            +
                  type: super_glue
         | 
| 414 | 
            +
                  name: SuperGLUE (copa)
         | 
| 415 | 
            +
                  config: copa
         | 
| 416 | 
            +
                  split: validation
         | 
| 417 | 
            +
                  revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
         | 
| 418 | 
            +
                metrics:
         | 
| 419 | 
            +
                - type: Accuracy
         | 
| 420 | 
            +
                  value: 76.0
         | 
| 421 | 
            +
              - task:
         | 
| 422 | 
            +
                  type: Sentence completion
         | 
| 423 | 
            +
                dataset:
         | 
| 424 | 
            +
                  type: xcopa
         | 
| 425 | 
            +
                  name: XCOPA (et)
         | 
| 426 | 
            +
                  config: et
         | 
| 427 | 
            +
                  split: validation
         | 
| 428 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 429 | 
            +
                metrics:
         | 
| 430 | 
            +
                - type: Accuracy
         | 
| 431 | 
            +
                  value: 53.0
         | 
| 432 | 
            +
              - task:
         | 
| 433 | 
            +
                  type: Sentence completion
         | 
| 434 | 
            +
                dataset:
         | 
| 435 | 
            +
                  type: xcopa
         | 
| 436 | 
            +
                  name: XCOPA (ht)
         | 
| 437 | 
            +
                  config: ht
         | 
| 438 | 
            +
                  split: validation
         | 
| 439 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 440 | 
            +
                metrics:
         | 
| 441 | 
            +
                - type: Accuracy
         | 
| 442 | 
            +
                  value: 64.0
         | 
| 443 | 
            +
              - task:
         | 
| 444 | 
            +
                  type: Sentence completion
         | 
| 445 | 
            +
                dataset:
         | 
| 446 | 
            +
                  type: xcopa
         | 
| 447 | 
            +
                  name: XCOPA (id)
         | 
| 448 | 
            +
                  config: id
         | 
| 449 | 
            +
                  split: validation
         | 
| 450 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 451 | 
            +
                metrics:
         | 
| 452 | 
            +
                - type: Accuracy
         | 
| 453 | 
            +
                  value: 70.0
         | 
| 454 | 
            +
              - task:
         | 
| 455 | 
            +
                  type: Sentence completion
         | 
| 456 | 
            +
                dataset:
         | 
| 457 | 
            +
                  type: xcopa
         | 
| 458 | 
            +
                  name: XCOPA (it)
         | 
| 459 | 
            +
                  config: it
         | 
| 460 | 
            +
                  split: validation
         | 
| 461 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 462 | 
            +
                metrics:
         | 
| 463 | 
            +
                - type: Accuracy
         | 
| 464 | 
            +
                  value: 53.0
         | 
| 465 | 
            +
              - task:
         | 
| 466 | 
            +
                  type: Sentence completion
         | 
| 467 | 
            +
                dataset:
         | 
| 468 | 
            +
                  type: xcopa
         | 
| 469 | 
            +
                  name: XCOPA (qu)
         | 
| 470 | 
            +
                  config: qu
         | 
| 471 | 
            +
                  split: validation
         | 
| 472 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 473 | 
            +
                metrics:
         | 
| 474 | 
            +
                - type: Accuracy
         | 
| 475 | 
            +
                  value: 56.0
         | 
| 476 | 
            +
              - task:
         | 
| 477 | 
            +
                  type: Sentence completion
         | 
| 478 | 
            +
                dataset:
         | 
| 479 | 
            +
                  type: xcopa
         | 
| 480 | 
            +
                  name: XCOPA (sw)
         | 
| 481 | 
            +
                  config: sw
         | 
| 482 | 
            +
                  split: validation
         | 
| 483 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 484 | 
            +
                metrics:
         | 
| 485 | 
            +
                - type: Accuracy
         | 
| 486 | 
            +
                  value: 66.0
         | 
| 487 | 
            +
              - task:
         | 
| 488 | 
            +
                  type: Sentence completion
         | 
| 489 | 
            +
                dataset:
         | 
| 490 | 
            +
                  type: xcopa
         | 
| 491 | 
            +
                  name: XCOPA (ta)
         | 
| 492 | 
            +
                  config: ta
         | 
| 493 | 
            +
                  split: validation
         | 
| 494 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 495 | 
            +
                metrics:
         | 
| 496 | 
            +
                - type: Accuracy
         | 
| 497 | 
            +
                  value: 59.0
         | 
| 498 | 
            +
              - task:
         | 
| 499 | 
            +
                  type: Sentence completion
         | 
| 500 | 
            +
                dataset:
         | 
| 501 | 
            +
                  type: xcopa
         | 
| 502 | 
            +
                  name: XCOPA (th)
         | 
| 503 | 
            +
                  config: th
         | 
| 504 | 
            +
                  split: validation
         | 
| 505 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 506 | 
            +
                metrics:
         | 
| 507 | 
            +
                - type: Accuracy
         | 
| 508 | 
            +
                  value: 63.0
         | 
| 509 | 
            +
              - task:
         | 
| 510 | 
            +
                  type: Sentence completion
         | 
| 511 | 
            +
                dataset:
         | 
| 512 | 
            +
                  type: xcopa
         | 
| 513 | 
            +
                  name: XCOPA (tr)
         | 
| 514 | 
            +
                  config: tr
         | 
| 515 | 
            +
                  split: validation
         | 
| 516 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 517 | 
            +
                metrics:
         | 
| 518 | 
            +
                - type: Accuracy
         | 
| 519 | 
            +
                  value: 61.0
         | 
| 520 | 
            +
              - task:
         | 
| 521 | 
            +
                  type: Sentence completion
         | 
| 522 | 
            +
                dataset:
         | 
| 523 | 
            +
                  type: xcopa
         | 
| 524 | 
            +
                  name: XCOPA (vi)
         | 
| 525 | 
            +
                  config: vi
         | 
| 526 | 
            +
                  split: validation
         | 
| 527 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 528 | 
            +
                metrics:
         | 
| 529 | 
            +
                - type: Accuracy
         | 
| 530 | 
            +
                  value: 77.0
         | 
| 531 | 
            +
              - task:
         | 
| 532 | 
            +
                  type: Sentence completion
         | 
| 533 | 
            +
                dataset:
         | 
| 534 | 
            +
                  type: xcopa
         | 
| 535 | 
            +
                  name: XCOPA (zh)
         | 
| 536 | 
            +
                  config: zh
         | 
| 537 | 
            +
                  split: validation
         | 
| 538 | 
            +
                  revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
         | 
| 539 | 
            +
                metrics:
         | 
| 540 | 
            +
                - type: Accuracy
         | 
| 541 | 
            +
                  value: 73.0
         | 
| 542 | 
            +
              - task:
         | 
| 543 | 
            +
                  type: Sentence completion
         | 
| 544 | 
            +
                dataset:
         | 
| 545 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 546 | 
            +
                  name: XStoryCloze (ar)
         | 
| 547 | 
            +
                  config: ar
         | 
| 548 | 
            +
                  split: validation
         | 
| 549 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 550 | 
            +
                metrics:
         | 
| 551 | 
            +
                - type: Accuracy
         | 
| 552 | 
            +
                  value: 80.61
         | 
| 553 | 
            +
              - task:
         | 
| 554 | 
            +
                  type: Sentence completion
         | 
| 555 | 
            +
                dataset:
         | 
| 556 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 557 | 
            +
                  name: XStoryCloze (es)
         | 
| 558 | 
            +
                  config: es
         | 
| 559 | 
            +
                  split: validation
         | 
| 560 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 561 | 
            +
                metrics:
         | 
| 562 | 
            +
                - type: Accuracy
         | 
| 563 | 
            +
                  value: 85.9
         | 
| 564 | 
            +
              - task:
         | 
| 565 | 
            +
                  type: Sentence completion
         | 
| 566 | 
            +
                dataset:
         | 
| 567 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 568 | 
            +
                  name: XStoryCloze (eu)
         | 
| 569 | 
            +
                  config: eu
         | 
| 570 | 
            +
                  split: validation
         | 
| 571 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 572 | 
            +
                metrics:
         | 
| 573 | 
            +
                - type: Accuracy
         | 
| 574 | 
            +
                  value: 70.95
         | 
| 575 | 
            +
              - task:
         | 
| 576 | 
            +
                  type: Sentence completion
         | 
| 577 | 
            +
                dataset:
         | 
| 578 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 579 | 
            +
                  name: XStoryCloze (hi)
         | 
| 580 | 
            +
                  config: hi
         | 
| 581 | 
            +
                  split: validation
         | 
| 582 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 583 | 
            +
                metrics:
         | 
| 584 | 
            +
                - type: Accuracy
         | 
| 585 | 
            +
                  value: 78.89
         | 
| 586 | 
            +
              - task:
         | 
| 587 | 
            +
                  type: Sentence completion
         | 
| 588 | 
            +
                dataset:
         | 
| 589 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 590 | 
            +
                  name: XStoryCloze (id)
         | 
| 591 | 
            +
                  config: id
         | 
| 592 | 
            +
                  split: validation
         | 
| 593 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 594 | 
            +
                metrics:
         | 
| 595 | 
            +
                - type: Accuracy
         | 
| 596 | 
            +
                  value: 82.99
         | 
| 597 | 
            +
              - task:
         | 
| 598 | 
            +
                  type: Sentence completion
         | 
| 599 | 
            +
                dataset:
         | 
| 600 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 601 | 
            +
                  name: XStoryCloze (my)
         | 
| 602 | 
            +
                  config: my
         | 
| 603 | 
            +
                  split: validation
         | 
| 604 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 605 | 
            +
                metrics:
         | 
| 606 | 
            +
                - type: Accuracy
         | 
| 607 | 
            +
                  value: 49.9
         | 
| 608 | 
            +
              - task:
         | 
| 609 | 
            +
                  type: Sentence completion
         | 
| 610 | 
            +
                dataset:
         | 
| 611 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 612 | 
            +
                  name: XStoryCloze (ru)
         | 
| 613 | 
            +
                  config: ru
         | 
| 614 | 
            +
                  split: validation
         | 
| 615 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 616 | 
            +
                metrics:
         | 
| 617 | 
            +
                - type: Accuracy
         | 
| 618 | 
            +
                  value: 61.42
         | 
| 619 | 
            +
              - task:
         | 
| 620 | 
            +
                  type: Sentence completion
         | 
| 621 | 
            +
                dataset:
         | 
| 622 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 623 | 
            +
                  name: XStoryCloze (sw)
         | 
| 624 | 
            +
                  config: sw
         | 
| 625 | 
            +
                  split: validation
         | 
| 626 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 627 | 
            +
                metrics:
         | 
| 628 | 
            +
                - type: Accuracy
         | 
| 629 | 
            +
                  value: 69.69
         | 
| 630 | 
            +
              - task:
         | 
| 631 | 
            +
                  type: Sentence completion
         | 
| 632 | 
            +
                dataset:
         | 
| 633 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 634 | 
            +
                  name: XStoryCloze (te)
         | 
| 635 | 
            +
                  config: te
         | 
| 636 | 
            +
                  split: validation
         | 
| 637 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 638 | 
            +
                metrics:
         | 
| 639 | 
            +
                - type: Accuracy
         | 
| 640 | 
            +
                  value: 73.66
         | 
| 641 | 
            +
              - task:
         | 
| 642 | 
            +
                  type: Sentence completion
         | 
| 643 | 
            +
                dataset:
         | 
| 644 | 
            +
                  type: Muennighoff/xstory_cloze
         | 
| 645 | 
            +
                  name: XStoryCloze (zh)
         | 
| 646 | 
            +
                  config: zh
         | 
| 647 | 
            +
                  split: validation
         | 
| 648 | 
            +
                  revision: 8bb76e594b68147f1a430e86829d07189622b90d
         | 
| 649 | 
            +
                metrics:
         | 
| 650 | 
            +
                - type: Accuracy
         | 
| 651 | 
            +
                  value: 84.32
         | 
| 652 | 
            +
            ---
         | 
| 653 | 
            +
             | 
| 654 | 
            +
            
         | 
| 655 | 
            +
             | 
| 656 | 
            +
            #  Table of Contents
         | 
| 657 | 
            +
             | 
| 658 | 
            +
            1. [Model Summary](#model-summary)
         | 
| 659 | 
            +
            2. [Use](#use)
         | 
| 660 | 
            +
            3. [Limitations](#limitations)
         | 
| 661 | 
            +
            4. [Training](#training)
         | 
| 662 | 
            +
            5. [Evaluation](#evaluation)
         | 
| 663 | 
            +
            7. [Citation](#citation)
         | 
| 664 | 
            +
             | 
| 665 | 
            +
            # Model Summary
         | 
| 666 | 
            +
             | 
| 667 | 
            +
            > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages.
         | 
| 668 | 
            +
             | 
| 669 | 
            +
            - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
         | 
| 670 | 
            +
            - **Paper:** [TODO]
         | 
| 671 | 
            +
            - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
         | 
| 672 | 
            +
            - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
         | 
| 673 | 
            +
            - **BLOOMZ & mT0 Model Family:**
         | 
| 674 | 
            +
             | 
| 675 | 
            +
            <table>
         | 
| 676 | 
            +
              <tr>
         | 
| 677 | 
            +
            <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
         | 
| 678 | 
            +
            </tr>
         | 
| 679 | 
            +
            <tr>
         | 
| 680 | 
            +
            <td>Parameters</td>
         | 
| 681 | 
            +
            <td>300M</td>
         | 
| 682 | 
            +
            <td>580M</td>
         | 
| 683 | 
            +
            <td>1.2B</td>
         | 
| 684 | 
            +
            <td>3.7B</td>
         | 
| 685 | 
            +
            <td>13B</td>
         | 
| 686 | 
            +
            <td>560M</td>
         | 
| 687 | 
            +
            <td>1.1B</td>
         | 
| 688 | 
            +
            <td>1.7B</td>
         | 
| 689 | 
            +
            <td>3B</td>
         | 
| 690 | 
            +
            <td>7.1B</td>
         | 
| 691 | 
            +
            <td>176B</td>
         | 
| 692 | 
            +
            </tr>
         | 
| 693 | 
            +
            <tr>
         | 
| 694 | 
            +
            <td>Finetuned Model</td>
         | 
| 695 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
         | 
| 696 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
         | 
| 697 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
         | 
| 698 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
         | 
| 699 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
         | 
| 700 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
         | 
| 701 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
         | 
| 702 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
         | 
| 703 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
         | 
| 704 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
         | 
| 705 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
         | 
| 706 | 
            +
            </tr>
         | 
| 707 | 
            +
            </tr>
         | 
| 708 | 
            +
              <tr>
         | 
| 709 | 
            +
            <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
         | 
| 710 | 
            +
            </tr>
         | 
| 711 | 
            +
            <tr>
         | 
| 712 | 
            +
            <td>Finetuned Model</td>
         | 
| 713 | 
            +
            <td></td>
         | 
| 714 | 
            +
            <td></td>
         | 
| 715 | 
            +
            <td></td>
         | 
| 716 | 
            +
            <td></td>
         | 
| 717 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
         | 
| 718 | 
            +
            <td></td>
         | 
| 719 | 
            +
            <td></td>
         | 
| 720 | 
            +
            <td></td>
         | 
| 721 | 
            +
            <td></td>
         | 
| 722 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
         | 
| 723 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
         | 
| 724 | 
            +
            </tr>
         | 
| 725 | 
            +
            <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
         | 
| 726 | 
            +
            </tr>
         | 
| 727 | 
            +
            <tr>
         | 
| 728 | 
            +
            <td>Finetuned Model</td>
         | 
| 729 | 
            +
            <td></td>
         | 
| 730 | 
            +
            <td></td>
         | 
| 731 | 
            +
            <td></td>
         | 
| 732 | 
            +
            <td></td>
         | 
| 733 | 
            +
            <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
         | 
| 734 | 
            +
            <td></td>
         | 
| 735 | 
            +
            <td></td>
         | 
| 736 | 
            +
            <td></td>
         | 
| 737 | 
            +
            <td></td>
         | 
| 738 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
         | 
| 739 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
         | 
| 740 | 
            +
            </tr>
         | 
| 741 | 
            +
            <th colspan="12">Original pretrained checkpoints. Not recommended.</th>
         | 
| 742 | 
            +
            <tr>
         | 
| 743 | 
            +
            <td>Pretrained Model</td>
         | 
| 744 | 
            +
            <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
         | 
| 745 | 
            +
            <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
         | 
| 746 | 
            +
            <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
         | 
| 747 | 
            +
            <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
         | 
| 748 | 
            +
            <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
         | 
| 749 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
         | 
| 750 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
         | 
| 751 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
         | 
| 752 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
         | 
| 753 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
         | 
| 754 | 
            +
            <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
         | 
| 755 | 
            +
            </tr>
         | 
| 756 | 
            +
            </table>
         | 
| 757 | 
            +
             | 
| 758 | 
            +
             | 
| 759 | 
            +
            # Use
         | 
| 760 | 
            +
             | 
| 761 | 
            +
            ## Intended use
         | 
| 762 | 
            +
             | 
| 763 | 
            +
            We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: 
         | 
| 764 | 
            +
            - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
         | 
| 765 | 
            +
            - Suggest at least five related search terms to "Mạng neural nhân tạo".
         | 
| 766 | 
            +
            - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
         | 
| 767 | 
            +
            - Explain in a sentence in Telugu what is backpropagation in neural networks.
         | 
| 768 | 
            +
             | 
| 769 | 
            +
            **Feel free to share your generations in the Community tab!**
         | 
| 770 | 
            +
             | 
| 771 | 
            +
            ## How to use
         | 
| 772 | 
            +
             | 
| 773 | 
            +
            ### CPU
         | 
| 774 | 
            +
             | 
| 775 | 
            +
            <details>
         | 
| 776 | 
            +
            <summary> Click to expand </summary>
         | 
| 777 | 
            +
             | 
| 778 | 
            +
            ```python
         | 
| 779 | 
            +
            # pip install -q transformers
         | 
| 780 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 781 | 
            +
             | 
| 782 | 
            +
            checkpoint = "bigscience/bloomz-3b"
         | 
| 783 | 
            +
             | 
| 784 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
         | 
| 785 | 
            +
            model = AutoModelForCausalLM.from_pretrained(checkpoint)
         | 
| 786 | 
            +
             | 
| 787 | 
            +
            inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
         | 
| 788 | 
            +
            outputs = model.generate(inputs)
         | 
| 789 | 
            +
            print(tokenizer.decode(outputs[0]))
         | 
| 790 | 
            +
            ```
         | 
| 791 | 
            +
             | 
| 792 | 
            +
            </details>
         | 
| 793 | 
            +
             | 
| 794 | 
            +
            ### GPU
         | 
| 795 | 
            +
             | 
| 796 | 
            +
            <details>
         | 
| 797 | 
            +
            <summary> Click to expand </summary>
         | 
| 798 | 
            +
             | 
| 799 | 
            +
            ```python
         | 
| 800 | 
            +
            # pip install -q transformers accelerate
         | 
| 801 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 802 | 
            +
             | 
| 803 | 
            +
            checkpoint = "bigscience/bloomz-3b"
         | 
| 804 | 
            +
             | 
| 805 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
         | 
| 806 | 
            +
            model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
         | 
| 807 | 
            +
             | 
| 808 | 
            +
            inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
         | 
| 809 | 
            +
            outputs = model.generate(inputs)
         | 
| 810 | 
            +
            print(tokenizer.decode(outputs[0]))
         | 
| 811 | 
            +
            ```
         | 
| 812 | 
            +
             | 
| 813 | 
            +
            </details>
         | 
| 814 | 
            +
             | 
| 815 | 
            +
            ### GPU in 8bit
         | 
| 816 | 
            +
             | 
| 817 | 
            +
            <details>
         | 
| 818 | 
            +
            <summary> Click to expand </summary>
         | 
| 819 | 
            +
             | 
| 820 | 
            +
            ```python
         | 
| 821 | 
            +
            # pip install -q transformers accelerate bitsandbytes
         | 
| 822 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 823 | 
            +
             | 
| 824 | 
            +
            checkpoint = "bigscience/bloomz-3b"
         | 
| 825 | 
            +
             | 
| 826 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
         | 
| 827 | 
            +
            model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
         | 
| 828 | 
            +
             | 
| 829 | 
            +
            inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
         | 
| 830 | 
            +
            outputs = model.generate(inputs)
         | 
| 831 | 
            +
            print(tokenizer.decode(outputs[0]))
         | 
| 832 | 
            +
            ```
         | 
| 833 | 
            +
             | 
| 834 | 
            +
            </details>
         | 
| 835 | 
            +
             | 
| 836 | 
            +
            <!-- Necessary for whitespace -->
         | 
| 837 | 
            +
            ###
         | 
| 838 | 
            +
             | 
| 839 | 
            +
            # Limitations
         | 
| 840 | 
            +
             | 
| 841 | 
            +
            **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
         | 
| 842 | 
            +
             | 
| 843 | 
            +
            # Training
         | 
| 844 | 
            +
             | 
| 845 | 
            +
            ## Model
         | 
| 846 | 
            +
             | 
| 847 | 
            +
            - **Architecture:** Same as [bloom-3b](https://huggingface.co/bigscience/bloom-3b), also refer to the `config.json` file
         | 
| 848 | 
            +
            - **Finetuning steps:** 2000
         | 
| 849 | 
            +
            - **Finetuning tokens:** 8.39 billion
         | 
| 850 | 
            +
            - **Finetuning layout:** 2x pipeline parallel, 1x tensor parallel, 64x data parallel
         | 
| 851 | 
            +
            - **Precision:** float16
         | 
| 852 | 
            +
             | 
| 853 | 
            +
            ## Hardware
         | 
| 854 | 
            +
             | 
| 855 | 
            +
            - **CPUs:** AMD CPUs with 512GB memory per node
         | 
| 856 | 
            +
            - **GPUs:** 128 A100 80GB GPUs with 8 GPUs per node (16 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links
         | 
| 857 | 
            +
            - **Communication:** NCCL-communications network with a fully dedicated subnet
         | 
| 858 | 
            +
             | 
| 859 | 
            +
            ## Software
         | 
| 860 | 
            +
             | 
| 861 | 
            +
            - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed)
         | 
| 862 | 
            +
            - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed)
         | 
| 863 | 
            +
            - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5)
         | 
| 864 | 
            +
            - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
         | 
| 865 | 
            +
             | 
| 866 | 
            +
            # Evaluation
         | 
| 867 | 
            +
             | 
| 868 | 
            +
            We refer to Table 7 from our paper [TODO LINK] & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
         | 
| 869 | 
            +
             | 
| 870 | 
            +
            # Citation
         | 
| 871 | 
            +
            ```bibtex
         | 
| 872 | 
            +
            TODO
         | 
| 873 | 
            +
            ```
         | 

