Commit
·
4333b95
1
Parent(s):
7dad45b
Update README.md
Browse files
README.md
CHANGED
|
@@ -69,7 +69,7 @@ language:
|
|
| 69 |
- my
|
| 70 |
- ne
|
| 71 |
- nl
|
| 72 |
-
- no
|
| 73 |
- ny
|
| 74 |
- pa
|
| 75 |
- pl
|
|
@@ -108,65 +108,78 @@ language:
|
|
| 108 |
tags:
|
| 109 |
- text2text-generation
|
| 110 |
widget:
|
| 111 |
-
- text:
|
| 112 |
-
|
| 113 |
-
<
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
</
|
| 117 |
-
<tr>
|
| 118 |
-
<td><a href=https://huggingface.co/datasets/bigscience/
|
| 119 |
-
<td>Mixture of 13 training tasks in 46 languages with
|
| 120 |
-
|
| 121 |
-
</
|
| 122 |
-
|
| 123 |
-
<td><a
|
| 124 |
-
|
| 125 |
-
<td
|
| 126 |
-
</tr>
|
| 127 |
-
<
|
| 128 |
-
|
| 129 |
-
<td
|
| 130 |
-
|
| 131 |
-
</
|
| 132 |
-
<tr>
|
| 133 |
-
<td><a href=https://huggingface.co/datasets/
|
| 134 |
-
<td
|
| 135 |
-
|
| 136 |
-
</
|
| 137 |
-
<
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
example_title:
|
| 145 |
-
- text:
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
example_title:
|
| 149 |
-
- text:
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
example_title:
|
| 156 |
-
- text:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
example_title:
|
| 160 |
-
- text:
|
| 161 |
-
example_title:
|
| 162 |
-
- text:
|
| 163 |
-
example_title:
|
| 164 |
-
- text:
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
example_title:
|
| 168 |
-
- text:
|
| 169 |
-
example_title:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
model-index:
|
| 171 |
- name: mt0-xxl
|
| 172 |
results:
|
|
@@ -268,7 +281,7 @@ model-index:
|
|
| 268 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
| 269 |
metrics:
|
| 270 |
- type: Accuracy
|
| 271 |
-
value: 43
|
| 272 |
- task:
|
| 273 |
type: Natural language inference
|
| 274 |
dataset:
|
|
@@ -345,7 +358,7 @@ model-index:
|
|
| 345 |
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
| 346 |
metrics:
|
| 347 |
- type: Accuracy
|
| 348 |
-
value: 59
|
| 349 |
- task:
|
| 350 |
type: Natural language inference
|
| 351 |
dataset:
|
|
@@ -472,7 +485,7 @@ model-index:
|
|
| 472 |
dataset:
|
| 473 |
type: story_cloze
|
| 474 |
name: StoryCloze (2016)
|
| 475 |
-
config:
|
| 476 |
split: validation
|
| 477 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
| 478 |
metrics:
|
|
@@ -488,7 +501,7 @@ model-index:
|
|
| 488 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 489 |
metrics:
|
| 490 |
- type: Accuracy
|
| 491 |
-
value: 93
|
| 492 |
- task:
|
| 493 |
type: Sentence completion
|
| 494 |
dataset:
|
|
@@ -499,7 +512,7 @@ model-index:
|
|
| 499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 500 |
metrics:
|
| 501 |
- type: Accuracy
|
| 502 |
-
value: 79
|
| 503 |
- task:
|
| 504 |
type: Sentence completion
|
| 505 |
dataset:
|
|
@@ -510,7 +523,7 @@ model-index:
|
|
| 510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 511 |
metrics:
|
| 512 |
- type: Accuracy
|
| 513 |
-
value: 81
|
| 514 |
- task:
|
| 515 |
type: Sentence completion
|
| 516 |
dataset:
|
|
@@ -521,7 +534,7 @@ model-index:
|
|
| 521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 522 |
metrics:
|
| 523 |
- type: Accuracy
|
| 524 |
-
value: 92
|
| 525 |
- task:
|
| 526 |
type: Sentence completion
|
| 527 |
dataset:
|
|
@@ -532,7 +545,7 @@ model-index:
|
|
| 532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 533 |
metrics:
|
| 534 |
- type: Accuracy
|
| 535 |
-
value: 90
|
| 536 |
- task:
|
| 537 |
type: Sentence completion
|
| 538 |
dataset:
|
|
@@ -543,7 +556,7 @@ model-index:
|
|
| 543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 544 |
metrics:
|
| 545 |
- type: Accuracy
|
| 546 |
-
value: 59
|
| 547 |
- task:
|
| 548 |
type: Sentence completion
|
| 549 |
dataset:
|
|
@@ -554,7 +567,7 @@ model-index:
|
|
| 554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 555 |
metrics:
|
| 556 |
- type: Accuracy
|
| 557 |
-
value: 79
|
| 558 |
- task:
|
| 559 |
type: Sentence completion
|
| 560 |
dataset:
|
|
@@ -565,7 +578,7 @@ model-index:
|
|
| 565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 566 |
metrics:
|
| 567 |
- type: Accuracy
|
| 568 |
-
value: 84
|
| 569 |
- task:
|
| 570 |
type: Sentence completion
|
| 571 |
dataset:
|
|
@@ -576,7 +589,7 @@ model-index:
|
|
| 576 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 577 |
metrics:
|
| 578 |
- type: Accuracy
|
| 579 |
-
value: 77
|
| 580 |
- task:
|
| 581 |
type: Sentence completion
|
| 582 |
dataset:
|
|
@@ -587,7 +600,7 @@ model-index:
|
|
| 587 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 588 |
metrics:
|
| 589 |
- type: Accuracy
|
| 590 |
-
value: 79
|
| 591 |
- task:
|
| 592 |
type: Sentence completion
|
| 593 |
dataset:
|
|
@@ -598,7 +611,7 @@ model-index:
|
|
| 598 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 599 |
metrics:
|
| 600 |
- type: Accuracy
|
| 601 |
-
value: 88
|
| 602 |
- task:
|
| 603 |
type: Sentence completion
|
| 604 |
dataset:
|
|
@@ -609,7 +622,7 @@ model-index:
|
|
| 609 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 610 |
metrics:
|
| 611 |
- type: Accuracy
|
| 612 |
-
value: 89
|
| 613 |
- task:
|
| 614 |
type: Sentence completion
|
| 615 |
dataset:
|
|
@@ -720,6 +733,7 @@ model-index:
|
|
| 720 |
metrics:
|
| 721 |
- type: Accuracy
|
| 722 |
value: 93.85
|
|
|
|
| 723 |
---
|
| 724 |
|
| 725 |

|
|
|
|
| 69 |
- my
|
| 70 |
- ne
|
| 71 |
- nl
|
| 72 |
+
- 'no'
|
| 73 |
- ny
|
| 74 |
- pa
|
| 75 |
- pl
|
|
|
|
| 108 |
tags:
|
| 109 |
- text2text-generation
|
| 110 |
widget:
|
| 111 |
+
- text: >-
|
| 112 |
+
<table> <tr> <th>Name</th> <th>Explanation</th> <th>Example models</th>
|
| 113 |
+
</tr> <tr> <td><a
|
| 114 |
+
href=https://huggingface.co/datasets/bigscience/xP3>xP3</a></t> <td>Mixture
|
| 115 |
+
of 13 training tasks in 46 languages with English prompts</td> <td><a
|
| 116 |
+
href=https://huggingface.co/bigscience/bloomz>bloomz</a> & <a
|
| 117 |
+
href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> </tr> <tr>
|
| 118 |
+
<td><a href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a></t>
|
| 119 |
+
<td>Mixture of 13 training tasks in 46 languages with prompts in 20
|
| 120 |
+
languages (machine-translated from English)</td> <td><a
|
| 121 |
+
href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a> & <a
|
| 122 |
+
href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> </tr>
|
| 123 |
+
<tr> <td><a
|
| 124 |
+
href=https://huggingface.co/datasets/bigscience/xP3all>xP3all</a></t>
|
| 125 |
+
<td>xP3 + our evaluation datasets adding an additional 3 tasks for a total
|
| 126 |
+
of 16 tasks in 46 languages with English prompts</td> <td></td> </tr> <tr>
|
| 127 |
+
<td><a
|
| 128 |
+
href=https://huggingface.co/datasets/bigscience/xP3megds>xP3megds</a></t>
|
| 129 |
+
<td><a
|
| 130 |
+
href=https://github.com/bigscience-workshop/Megatron-DeepSpeed>Megatron-DeepSpeed</a>
|
| 131 |
+
processed version of xP3</td> <td><a
|
| 132 |
+
href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> <tr>
|
| 133 |
+
<td><a href=https://huggingface.co/datasets/Muennighoff/P3>P3</a></t>
|
| 134 |
+
<td>Repreprocessed version of the English-only <a
|
| 135 |
+
href=https://huggingface.co/datasets/bigscience/P3>P3</a> with 8 training
|
| 136 |
+
tasks</td> <td><a
|
| 137 |
+
href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a> & <a
|
| 138 |
+
href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> </tr>
|
| 139 |
+
</table> Which dataset has the most tasks?
|
| 140 |
+
example_title: en-en struct-to-text
|
| 141 |
+
- text: Life is beautiful! Translate to Mongolian.
|
| 142 |
+
example_title: mn-en translation
|
| 143 |
+
- text: Le mot japonais «憂鬱» veut dire quoi en Odia?
|
| 144 |
+
example_title: jp-or-fr translation
|
| 145 |
+
- text: >-
|
| 146 |
+
Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte
|
| 147 |
+
stell die Frage auf Norwegisch.
|
| 148 |
+
example_title: de-nb quiz
|
| 149 |
+
- text: >-
|
| 150 |
+
We present BLOOMZ & mT0, a family of models capable of following human
|
| 151 |
+
instructions in dozens of languages zero-shot. We finetune BLOOM & mT5
|
| 152 |
+
pretrained multilingual language models on our crosslingual task mixture
|
| 153 |
+
(xP3) and find our resulting models capable of crosslingual generalization
|
| 154 |
+
to unseen tasks & languages. What are the keywords in Chinese?
|
| 155 |
+
example_title: zh-en keywords
|
| 156 |
+
- text: >-
|
| 157 |
+
一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
| 158 |
+
review as positive, neutral or negative?
|
| 159 |
+
example_title: zh-en sentiment
|
| 160 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
| 161 |
+
example_title: zh-zh sentiment
|
| 162 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
| 163 |
+
example_title: vi-en query
|
| 164 |
+
- text: >-
|
| 165 |
+
Proposez au moins cinq mots clés concernant «Réseau de neurones
|
| 166 |
+
artificiels».
|
| 167 |
+
example_title: fr-fr query
|
| 168 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
| 169 |
+
example_title: te-en qa
|
| 170 |
+
- text: Why is the sky blue?
|
| 171 |
+
example_title: en-en qa
|
| 172 |
+
- text: >-
|
| 173 |
+
Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
| 174 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its
|
| 175 |
+
moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
|
| 176 |
+
example_title: es-en fable
|
| 177 |
+
- text: >-
|
| 178 |
+
Write a fable about wood elves living in a forest that is suddenly invaded
|
| 179 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and
|
| 180 |
+
its moral is "Violence is the last refuge of the incompetent". Fable (in
|
| 181 |
+
Hindi):
|
| 182 |
+
example_title: hi-en fable
|
| 183 |
model-index:
|
| 184 |
- name: mt0-xxl
|
| 185 |
results:
|
|
|
|
| 281 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
| 282 |
metrics:
|
| 283 |
- type: Accuracy
|
| 284 |
+
value: 43
|
| 285 |
- task:
|
| 286 |
type: Natural language inference
|
| 287 |
dataset:
|
|
|
|
| 358 |
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
| 359 |
metrics:
|
| 360 |
- type: Accuracy
|
| 361 |
+
value: 59
|
| 362 |
- task:
|
| 363 |
type: Natural language inference
|
| 364 |
dataset:
|
|
|
|
| 485 |
dataset:
|
| 486 |
type: story_cloze
|
| 487 |
name: StoryCloze (2016)
|
| 488 |
+
config: '2016'
|
| 489 |
split: validation
|
| 490 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
| 491 |
metrics:
|
|
|
|
| 501 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 502 |
metrics:
|
| 503 |
- type: Accuracy
|
| 504 |
+
value: 93
|
| 505 |
- task:
|
| 506 |
type: Sentence completion
|
| 507 |
dataset:
|
|
|
|
| 512 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 513 |
metrics:
|
| 514 |
- type: Accuracy
|
| 515 |
+
value: 79
|
| 516 |
- task:
|
| 517 |
type: Sentence completion
|
| 518 |
dataset:
|
|
|
|
| 523 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 524 |
metrics:
|
| 525 |
- type: Accuracy
|
| 526 |
+
value: 81
|
| 527 |
- task:
|
| 528 |
type: Sentence completion
|
| 529 |
dataset:
|
|
|
|
| 534 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 535 |
metrics:
|
| 536 |
- type: Accuracy
|
| 537 |
+
value: 92
|
| 538 |
- task:
|
| 539 |
type: Sentence completion
|
| 540 |
dataset:
|
|
|
|
| 545 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 546 |
metrics:
|
| 547 |
- type: Accuracy
|
| 548 |
+
value: 90
|
| 549 |
- task:
|
| 550 |
type: Sentence completion
|
| 551 |
dataset:
|
|
|
|
| 556 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 557 |
metrics:
|
| 558 |
- type: Accuracy
|
| 559 |
+
value: 59
|
| 560 |
- task:
|
| 561 |
type: Sentence completion
|
| 562 |
dataset:
|
|
|
|
| 567 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 568 |
metrics:
|
| 569 |
- type: Accuracy
|
| 570 |
+
value: 79
|
| 571 |
- task:
|
| 572 |
type: Sentence completion
|
| 573 |
dataset:
|
|
|
|
| 578 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 579 |
metrics:
|
| 580 |
- type: Accuracy
|
| 581 |
+
value: 84
|
| 582 |
- task:
|
| 583 |
type: Sentence completion
|
| 584 |
dataset:
|
|
|
|
| 589 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 590 |
metrics:
|
| 591 |
- type: Accuracy
|
| 592 |
+
value: 77
|
| 593 |
- task:
|
| 594 |
type: Sentence completion
|
| 595 |
dataset:
|
|
|
|
| 600 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 601 |
metrics:
|
| 602 |
- type: Accuracy
|
| 603 |
+
value: 79
|
| 604 |
- task:
|
| 605 |
type: Sentence completion
|
| 606 |
dataset:
|
|
|
|
| 611 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 612 |
metrics:
|
| 613 |
- type: Accuracy
|
| 614 |
+
value: 88
|
| 615 |
- task:
|
| 616 |
type: Sentence completion
|
| 617 |
dataset:
|
|
|
|
| 622 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 623 |
metrics:
|
| 624 |
- type: Accuracy
|
| 625 |
+
value: 89
|
| 626 |
- task:
|
| 627 |
type: Sentence completion
|
| 628 |
dataset:
|
|
|
|
| 733 |
metrics:
|
| 734 |
- type: Accuracy
|
| 735 |
value: 93.85
|
| 736 |
+
pipeline_tag: text2text-generation
|
| 737 |
---
|
| 738 |
|
| 739 |

|