bilalzafar commited on
Commit
1254aa8
·
verified ·
1 Parent(s): 2179987

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -12
README.md CHANGED
@@ -33,7 +33,6 @@ The model performs **binary classification**:
33
 
34
  **Intended use:** **CBDC-BERT** is intended for research on CBDC discourse across time and jurisdictions, for pre-filtering or flagging CBDC-related sentences in large central-bank speech corpora, and as an input to dashboards, indices, or downstream NLP pipelines used in central banking and finance.
35
 
36
- ---
37
  ## Training Details
38
  - **Base checkpoint:** [`bilalzafar/CentralBank-BERT`](https://huggingface.co/bilalzafar/CentralBank-BERT)
39
  - **Architecture:** `BertForSequenceClassification` (binary head randomly initialized)
@@ -47,23 +46,31 @@ The model performs **binary classification**:
47
  - **Evaluation:** per epoch; best model by F1
48
  - **Hardware:** Google Colab GPU
49
 
50
- ---
51
-
52
  ## Performance & Robustness
53
  On the full test split (n=2,200), the model achieves **Accuracy = 0.9950** and **F1 (binary) = 0.9949**. In a separate confusion-matrix run on valid rows (n=2,175), it records **TP=1,065**, **FP=4**, **FN=1**, **TN=1,105**, yielding **Accuracy = 0.9977**, **Precision (CBDC) = 0.9963**, **Recall (CBDC) = 0.9991**, **ROC-AUC = 1.0000**, and a **Brier score = 0.0024**; the class balance is **Non-CBDC = 1,109** and **CBDC = 1,066**. Compared to TF-IDF baselines—**Logistic Regression (0.97)**, **Naive Bayes (0.92)**, **Random Forest (0.98)**, and **XGBoost (0.99)**, CBDC-BERT **matches or exceeds** these results while delivering **near-perfect ROC-AUC** with **well-calibrated probabilities** (low Brier). Robustness checks across **edge cases**, **noise-injected**, **syntactically altered**, and **paraphrased (“translated-like”)** inputs each show **8/10 correct (80%)**, and sentence-length bias is low (**ρ ≈ 0.1222**).
54
 
55
  ---
56
 
57
- ## Citation
58
- If you use this model in your research or application, please cite it as:
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- > **CBDC-BERT: A Transformer-Based Model for Identifying Central Bank Digital Currency Discourse in Policy Speeches**
61
- > *Paper under write-up*
62
- >
63
 
64
- For academic or technical inquiries, contact:
65
- **Dr. Muhammad Bilal Zafar**
66
- 📧 bilalezafar@gmail.com
67
 
68
  ---
69
 
@@ -86,4 +93,21 @@ result = classifier(text)[0]
86
  print(f"Prediction: {label_map[result['label']]} | Confidence: {result['score']:.4f}")
87
 
88
  # Output example:
89
- # [{Prediction: CBDC | Confidence: 0.9993}]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  **Intended use:** **CBDC-BERT** is intended for research on CBDC discourse across time and jurisdictions, for pre-filtering or flagging CBDC-related sentences in large central-bank speech corpora, and as an input to dashboards, indices, or downstream NLP pipelines used in central banking and finance.
35
 
 
36
  ## Training Details
37
  - **Base checkpoint:** [`bilalzafar/CentralBank-BERT`](https://huggingface.co/bilalzafar/CentralBank-BERT)
38
  - **Architecture:** `BertForSequenceClassification` (binary head randomly initialized)
 
46
  - **Evaluation:** per epoch; best model by F1
47
  - **Hardware:** Google Colab GPU
48
 
 
 
49
  ## Performance & Robustness
50
  On the full test split (n=2,200), the model achieves **Accuracy = 0.9950** and **F1 (binary) = 0.9949**. In a separate confusion-matrix run on valid rows (n=2,175), it records **TP=1,065**, **FP=4**, **FN=1**, **TN=1,105**, yielding **Accuracy = 0.9977**, **Precision (CBDC) = 0.9963**, **Recall (CBDC) = 0.9991**, **ROC-AUC = 1.0000**, and a **Brier score = 0.0024**; the class balance is **Non-CBDC = 1,109** and **CBDC = 1,066**. Compared to TF-IDF baselines—**Logistic Regression (0.97)**, **Naive Bayes (0.92)**, **Random Forest (0.98)**, and **XGBoost (0.99)**, CBDC-BERT **matches or exceeds** these results while delivering **near-perfect ROC-AUC** with **well-calibrated probabilities** (low Brier). Robustness checks across **edge cases**, **noise-injected**, **syntactically altered**, and **paraphrased (“translated-like”)** inputs each show **8/10 correct (80%)**, and sentence-length bias is low (**ρ ≈ 0.1222**).
51
 
52
  ---
53
 
54
+ ## Other CBDC Models
55
+
56
+ This model is part of the **CentralBank-BERT / CBDC model family**, a suite of domain-adapted classifiers for analyzing central-bank communication.
57
+
58
+ | **Model** | **Purpose** | **Intended Use** | **Link** |
59
+ | ------------------------------- | ------------------------------------------------------------------- | ------------------------------------------------------------------- | ---------------------------------------------------------------------- |
60
+ | **bilalzafar/CentralBank-BERT** | Domain-adaptive masked LM trained on BIS speeches (1996–2024). | Base encoder for CBDC downstream tasks; fill-mask tasks. | [CentralBank-BERT](https://huggingface.co/bilalzafar/CentralBank-BERT) |
61
+ | **bilalzafar/CBDC-BERT** | Binary classifier: CBDC vs. Non-CBDC. | Flagging CBDC-related discourse in large corpora. | [CBDC-BERT](https://huggingface.co/bilalzafar/CBDC-BERT) |
62
+ | **bilalzafar/CBDC-Stance** | 3-class stance model (Pro, Wait-and-See, Anti). | Research on policy stances and discourse monitoring. | [CBDC-Stance](https://huggingface.co/bilalzafar/CBDC-Stance) |
63
+ | **bilalzafar/CBDC-Sentiment** | 3-class sentiment model (Positive, Neutral, Negative). | Tone analysis in central bank communications. | [CBDC-Sentiment](https://huggingface.co/bilalzafar/CBDC-Sentiment) |
64
+ | **bilalzafar/CBDC-Type** | Classifies Retail, Wholesale, General CBDC mentions. | Distinguishing policy focus (retail vs wholesale). | [CBDC-Type](https://huggingface.co/bilalzafar/CBDC-Type) |
65
+ | **bilalzafar/CBDC-Discourse** | 3-class discourse classifier (Feature, Process, Risk-Benefit). | Structured categorization of CBDC communications. | [CBDC-Discourse](https://huggingface.co/bilalzafar/CBDC-Discourse) |
66
+ | **bilalzafar/CentralBank-NER** | Named Entity Recognition (NER) model for central banking discourse. | Identifying institutions, persons, and policy entities in speeches. | [CentralBank-NER](https://huggingface.co/bilalzafar/CentralBank-NER) |
67
+
68
 
69
+ ## Repository and Replication Package
 
 
70
 
71
+ All **training pipelines, preprocessing scripts, evaluation notebooks, and result outputs** are available in the companion GitHub repository:
72
+
73
+ 🔗 **[https://github.com/bilalezafar/CentralBank-BERT](https://github.com/bilalezafar/CentralBank-BERT)**
74
 
75
  ---
76
 
 
93
  print(f"Prediction: {label_map[result['label']]} | Confidence: {result['score']:.4f}")
94
 
95
  # Output example:
96
+ # [{Prediction: CBDC | Confidence: 0.9993}]
97
+ ```
98
+ ---
99
+
100
+ ## Citation
101
+
102
+ If you use this model, please cite as:
103
+
104
+ **Zafar, M. B. (2025). *CentralBank-BERT: Machine Learning Evidence on Central Bank Digital Currency Discourse*. SSRN. [https://papers.ssrn.com/abstract=5404456](https://papers.ssrn.com/abstract=5404456)**
105
+
106
+ ```bibtex
107
+ @article{zafar2025centralbankbert,
108
+ title={CentralBank-BERT: Machine Learning Evidence on Central Bank Digital Currency Discourse},
109
+ author={Zafar, Muhammad Bilal},
110
+ year={2025},
111
+ journal={SSRN Electronic Journal},
112
+ url={https://papers.ssrn.com/abstract=5404456}
113
+ }