--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-mc-2 results: [] --- # roberta-mc-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5972 - Accuracy: 0.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6096 | 1.0 | 24 | 1.6086 | 0.3 | | 1.614 | 2.0 | 48 | 1.6083 | 0.4 | | 1.6032 | 3.0 | 72 | 1.6070 | 0.4 | | 1.6185 | 4.0 | 96 | 1.6057 | 0.4 | | 1.6106 | 5.0 | 120 | 1.6045 | 0.4 | | 1.6093 | 6.0 | 144 | 1.6028 | 0.4 | | 1.597 | 7.0 | 168 | 1.6010 | 0.4 | | 1.6094 | 8.0 | 192 | 1.5994 | 0.4 | | 1.6029 | 9.0 | 216 | 1.5977 | 0.4 | | 1.5997 | 10.0 | 240 | 1.5972 | 0.4 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3