hassonofer commited on
Commit
84e1542
·
verified ·
1 Parent(s): 430f421

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -3
README.md CHANGED
@@ -1,3 +1,109 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - birder
5
+ - pytorch
6
+ library_name: birder
7
+ license: apache-2.0
8
+ ---
9
+
10
+ # Model Card for convnext_v1_tiny_eu-common
11
+
12
+ A ConvNeXt v1 Tiny image classification model. This model was trained on the `eu-common` dataset containing common European bird species.
13
+
14
+ The species list is derived from the Collins bird guide [^1].
15
+
16
+ [^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins.
17
+
18
+ Note: A 256 x 256 variant of this model is available as `convnext_v1_tiny_eu-common256px`.
19
+
20
+ ## Model Details
21
+
22
+ - **Model Type:** Image classification and detection backbone
23
+ - **Model Stats:**
24
+ - Params (M): 28.4
25
+ - Input image size: 384 x 384
26
+ - **Dataset:** eu-common (707 classes)
27
+
28
+ - **Papers:**
29
+ - A ConvNet for the 2020s: <https://arxiv.org/abs/2201.03545>
30
+
31
+ ## Model Usage
32
+
33
+ ### Image Classification
34
+
35
+ ```python
36
+ import birder
37
+ from birder.inference.classification import infer_image
38
+
39
+ (net, model_info) = birder.load_pretrained_model("convnext_v1_tiny_eu-common", inference=True)
40
+ # Note: A 256x256 variant is available as "convnext_v1_tiny_eu-common256px"
41
+
42
+ # Get the image size the model was trained on
43
+ size = birder.get_size_from_signature(model_info.signature)
44
+
45
+ # Create an inference transform
46
+ transform = birder.classification_transform(size, model_info.rgb_stats)
47
+
48
+ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
49
+ (out, _) = infer_image(net, image, transform)
50
+ # out is a NumPy array with shape of (1, 707), representing class probabilities.
51
+ ```
52
+
53
+ ### Image Embeddings
54
+
55
+ ```python
56
+ import birder
57
+ from birder.inference.classification import infer_image
58
+
59
+ (net, model_info) = birder.load_pretrained_model("convnext_v1_tiny_eu-common", inference=True)
60
+
61
+ # Get the image size the model was trained on
62
+ size = birder.get_size_from_signature(model_info.signature)
63
+
64
+ # Create an inference transform
65
+ transform = birder.classification_transform(size, model_info.rgb_stats)
66
+
67
+ image = "path/to/image.jpeg" # or a PIL image
68
+ (out, embedding) = infer_image(net, image, transform, return_embedding=True)
69
+ # embedding is a NumPy array with shape of (1, 768)
70
+ ```
71
+
72
+ ### Detection Feature Map
73
+
74
+ ```python
75
+ from PIL import Image
76
+ import birder
77
+
78
+ (net, model_info) = birder.load_pretrained_model("convnext_v1_tiny_eu-common", inference=True)
79
+
80
+ # Get the image size the model was trained on
81
+ size = birder.get_size_from_signature(model_info.signature)
82
+
83
+ # Create an inference transform
84
+ transform = birder.classification_transform(size, model_info.rgb_stats)
85
+
86
+ image = Image.open("path/to/image.jpeg")
87
+ features = net.detection_features(transform(image).unsqueeze(0))
88
+ # features is a dict (stage name -> torch.Tensor)
89
+ print([(k, v.size()) for k, v in features.items()])
90
+ # Output example:
91
+ # [('stage1', torch.Size([1, 96, 96, 96])),
92
+ # ('stage2', torch.Size([1, 192, 48, 48])),
93
+ # ('stage3', torch.Size([1, 384, 24, 24])),
94
+ # ('stage4', torch.Size([1, 768, 12, 12]))]
95
+ ```
96
+
97
+ ## Citation
98
+
99
+ ```bibtex
100
+ @misc{liu2022convnet2020s,
101
+ title={A ConvNet for the 2020s},
102
+ author={Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
103
+ year={2022},
104
+ eprint={2201.03545},
105
+ archivePrefix={arXiv},
106
+ primaryClass={cs.CV},
107
+ url={https://arxiv.org/abs/2201.03545},
108
+ }
109
+ ```