Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,89 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- cc100
|
| 5 |
+
language:
|
| 6 |
+
- tr
|
| 7 |
+
library_name: peft
|
| 8 |
+
pipeline_tag: token-classification
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
from peft import PeftModel, prepare_model_for_kbit_training
|
| 13 |
+
from transformers import T5ForTokenClassification, BitsAndBytesConfig
|
| 14 |
+
import torch
|
| 15 |
+
|
| 16 |
+
model_id = "google/byt5-small"
|
| 17 |
+
|
| 18 |
+
bnb_config = BitsAndBytesConfig(
|
| 19 |
+
load_in_4bit=True,
|
| 20 |
+
bnb_4bit_quant_type="nf4",
|
| 21 |
+
bnb_4bit_use_double_quant=True,
|
| 22 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
model = T5ForTokenClassification.from_pretrained(model_id,
|
| 26 |
+
num_labels=2,
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
quantization_config=bnb_config,
|
| 29 |
+
device_map="auto",)
|
| 30 |
+
model = prepare_model_for_kbit_training(model)
|
| 31 |
+
model = PeftModel.from_pretrained(model, 'bite-the-byte/byt5-small-deASCIIfy-TR')
|
| 32 |
+
|
| 33 |
+
def test_mask(data):
|
| 34 |
+
"""
|
| 35 |
+
Masks the padded tokens in the input.
|
| 36 |
+
Args:
|
| 37 |
+
data (list): List of strings.
|
| 38 |
+
Returns:
|
| 39 |
+
dataset (list): List of dictionaries.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
dataset = list()
|
| 43 |
+
for sample in data:
|
| 44 |
+
new_sample = dict()
|
| 45 |
+
|
| 46 |
+
input_tokens = [i + 3 for i in sample.encode('utf-8')]
|
| 47 |
+
input_tokens.append(0) # eos token
|
| 48 |
+
new_sample['input_ids'] = torch.tensor([input_tokens], dtype=torch.int64)
|
| 49 |
+
|
| 50 |
+
# Create attention mask
|
| 51 |
+
attention_mask = [1] * len(input_tokens) # Attend to all tokens
|
| 52 |
+
new_sample['attention_mask'] = torch.tensor([attention_mask], dtype=torch.int64)
|
| 53 |
+
|
| 54 |
+
dataset.append(new_sample)
|
| 55 |
+
|
| 56 |
+
return dataset
|
| 57 |
+
|
| 58 |
+
def rewrite(model, data):
|
| 59 |
+
"""
|
| 60 |
+
Rewrites the input text with the model.
|
| 61 |
+
Args:
|
| 62 |
+
model (torch.nn.Module): Model.
|
| 63 |
+
data (dict): Dictionary containing 'input_ids' and 'attention_mask'.
|
| 64 |
+
Returns:
|
| 65 |
+
output (str): Rewritten text.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
data = {k: v.to(model.device) for k, v in data.items()}
|
| 70 |
+
pred = torch.argmax(model(**data).logits, dim=2)
|
| 71 |
+
|
| 72 |
+
output = list() # save the indices of the characters as list of integers
|
| 73 |
+
|
| 74 |
+
# Conversion table for Turkish characters {100: [300, 350], ...}
|
| 75 |
+
en2tr = {en: tr for tr, en in zip(list(map(list, map(str.encode, list('ÜİĞŞÇÖüığşçö')))), list(map(ord, list('UIGSCOuigsco'))))}
|
| 76 |
+
|
| 77 |
+
for inp, lab in zip((data['input_ids'] - 3)[0].tolist(), pred[0].tolist()):
|
| 78 |
+
if lab and inp in en2tr:
|
| 79 |
+
# if the model predicts a diacritic, replace it with the corresponding Turkish character
|
| 80 |
+
output.extend(en2tr[inp])
|
| 81 |
+
elif inp >= 0: output.append(inp)
|
| 82 |
+
return bytes(output).decode()
|
| 83 |
+
|
| 84 |
+
def try_it(text, model):#=model):
|
| 85 |
+
sample = test_mask([text])
|
| 86 |
+
return rewrite(model, sample[0])
|
| 87 |
+
|
| 88 |
+
try_it('Cekoslovakyalilastiramadiklarimizdan misiniz?', model)
|
| 89 |
+
```
|