blemond commited on
Commit
c8a098a
·
verified ·
1 Parent(s): 3118dd8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,506 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:76932
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: intfloat/multilingual-e5-large
11
+ widget:
12
+ - source_sentence: 'query: ATM Adaptation Layer 2의 약어는 무엇인가요?'
13
+ sentences:
14
+ - 'passage: 2 Transmit 2 Receive (기술)'
15
+ - 'passage: Alternating Current (개념)'
16
+ - 'passage: AAL2 (기술)'
17
+ - source_sentence: 'query: AC의 접근 클래스 C0부터 C15까지의 기능은 무엇인가요?'
18
+ sentences:
19
+ - 'passage: Access Class (C0 to C15) (개념)'
20
+ - 'passage: 3 Dimension-Through Silicon Via (기술)'
21
+ - 'passage: ACAP (Conceptual)'
22
+ - source_sentence: 'query: What is the abbreviation for Alarm Agent Handling Block?'
23
+ sentences:
24
+ - 'passage: ATM Connection establishment/release Control Block (기술)'
25
+ - 'passage: AAGHB (Technical)'
26
+ - 'passage: Account Card Calling (활용)'
27
+ - source_sentence: 'query: ABPL의 ATM 기본 속도 물리 계층 장치는 어떻게 구성되어 있나요?'
28
+ sentences:
29
+ - 'passage: ATM Base Rate Physical Layer Unit (기술)'
30
+ - 'passage: 3A (개념)'
31
+ - 'passage: 5GTF (Conceptual)'
32
+ - source_sentence: 'query: How does the triple encryption process of 3-DES enhance
33
+ security?'
34
+ sentences:
35
+ - 'passage: 5th Generation Technical Forum (Conceptual)'
36
+ - 'passage: Triple Data Encryption Standard (Technical)'
37
+ - 'passage: ABCDEF (활용)'
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - cosine_accuracy@1
42
+ - cosine_accuracy@3
43
+ - cosine_accuracy@5
44
+ - cosine_accuracy@10
45
+ - cosine_precision@1
46
+ - cosine_precision@3
47
+ - cosine_precision@5
48
+ - cosine_precision@10
49
+ - cosine_recall@1
50
+ - cosine_recall@3
51
+ - cosine_recall@5
52
+ - cosine_recall@10
53
+ - cosine_ndcg@10
54
+ - cosine_mrr@10
55
+ - cosine_map@100
56
+ model-index:
57
+ - name: SentenceTransformer based on intfloat/multilingual-e5-large
58
+ results:
59
+ - task:
60
+ type: information-retrieval
61
+ name: Information Retrieval
62
+ dataset:
63
+ name: e5 eval real
64
+ type: e5-eval-real
65
+ metrics:
66
+ - type: cosine_accuracy@1
67
+ value: 0.8686666666666667
68
+ name: Cosine Accuracy@1
69
+ - type: cosine_accuracy@3
70
+ value: 0.969
71
+ name: Cosine Accuracy@3
72
+ - type: cosine_accuracy@5
73
+ value: 0.9832
74
+ name: Cosine Accuracy@5
75
+ - type: cosine_accuracy@10
76
+ value: 0.9922
77
+ name: Cosine Accuracy@10
78
+ - type: cosine_precision@1
79
+ value: 0.8686666666666667
80
+ name: Cosine Precision@1
81
+ - type: cosine_precision@3
82
+ value: 0.323
83
+ name: Cosine Precision@3
84
+ - type: cosine_precision@5
85
+ value: 0.19664000000000004
86
+ name: Cosine Precision@5
87
+ - type: cosine_precision@10
88
+ value: 0.09922000000000002
89
+ name: Cosine Precision@10
90
+ - type: cosine_recall@1
91
+ value: 0.8686666666666667
92
+ name: Cosine Recall@1
93
+ - type: cosine_recall@3
94
+ value: 0.969
95
+ name: Cosine Recall@3
96
+ - type: cosine_recall@5
97
+ value: 0.9832
98
+ name: Cosine Recall@5
99
+ - type: cosine_recall@10
100
+ value: 0.9922
101
+ name: Cosine Recall@10
102
+ - type: cosine_ndcg@10
103
+ value: 0.9376619313817377
104
+ name: Cosine Ndcg@10
105
+ - type: cosine_mrr@10
106
+ value: 0.9193550000000039
107
+ name: Cosine Mrr@10
108
+ - type: cosine_map@100
109
+ value: 0.9197550584627825
110
+ name: Cosine Map@100
111
+ ---
112
+
113
+ # SentenceTransformer based on intfloat/multilingual-e5-large
114
+
115
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
116
+
117
+ ## Model Details
118
+
119
+ ### Model Description
120
+ - **Model Type:** Sentence Transformer
121
+ - **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
122
+ - **Maximum Sequence Length:** 256 tokens
123
+ - **Output Dimensionality:** 1024 dimensions
124
+ - **Similarity Function:** Cosine Similarity
125
+ - **Training Dataset:**
126
+ - train
127
+ <!-- - **Language:** Unknown -->
128
+ <!-- - **License:** Unknown -->
129
+
130
+ ### Model Sources
131
+
132
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
133
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
134
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
135
+
136
+ ### Full Model Architecture
137
+
138
+ ```
139
+ SentenceTransformer(
140
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
141
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
+ (2): Normalize()
143
+ )
144
+ ```
145
+
146
+ ## Usage
147
+
148
+ ### Direct Usage (Sentence Transformers)
149
+
150
+ First install the Sentence Transformers library:
151
+
152
+ ```bash
153
+ pip install -U sentence-transformers
154
+ ```
155
+
156
+ Then you can load this model and run inference.
157
+ ```python
158
+ from sentence_transformers import SentenceTransformer
159
+
160
+ # Download from the 🤗 Hub
161
+ model = SentenceTransformer("sentence_transformers_model_id")
162
+ # Run inference
163
+ sentences = [
164
+ 'query: How does the triple encryption process of 3-DES enhance security?',
165
+ 'passage: Triple Data Encryption Standard (Technical)',
166
+ 'passage: ABCDEF (활용)',
167
+ ]
168
+ embeddings = model.encode(sentences)
169
+ print(embeddings.shape)
170
+ # [3, 1024]
171
+
172
+ # Get the similarity scores for the embeddings
173
+ similarities = model.similarity(embeddings, embeddings)
174
+ print(similarities)
175
+ # tensor([[1.0000, 0.8389, 0.1546],
176
+ # [0.8389, 1.0000, 0.0850],
177
+ # [0.1546, 0.0850, 1.0000]])
178
+ ```
179
+
180
+ <!--
181
+ ### Direct Usage (Transformers)
182
+
183
+ <details><summary>Click to see the direct usage in Transformers</summary>
184
+
185
+ </details>
186
+ -->
187
+
188
+ <!--
189
+ ### Downstream Usage (Sentence Transformers)
190
+
191
+ You can finetune this model on your own dataset.
192
+
193
+ <details><summary>Click to expand</summary>
194
+
195
+ </details>
196
+ -->
197
+
198
+ <!--
199
+ ### Out-of-Scope Use
200
+
201
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
202
+ -->
203
+
204
+ ## Evaluation
205
+
206
+ ### Metrics
207
+
208
+ #### Information Retrieval
209
+
210
+ * Dataset: `e5-eval-real`
211
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
212
+
213
+ | Metric | Value |
214
+ |:--------------------|:-----------|
215
+ | cosine_accuracy@1 | 0.8687 |
216
+ | cosine_accuracy@3 | 0.969 |
217
+ | cosine_accuracy@5 | 0.9832 |
218
+ | cosine_accuracy@10 | 0.9922 |
219
+ | cosine_precision@1 | 0.8687 |
220
+ | cosine_precision@3 | 0.323 |
221
+ | cosine_precision@5 | 0.1966 |
222
+ | cosine_precision@10 | 0.0992 |
223
+ | cosine_recall@1 | 0.8687 |
224
+ | cosine_recall@3 | 0.969 |
225
+ | cosine_recall@5 | 0.9832 |
226
+ | cosine_recall@10 | 0.9922 |
227
+ | **cosine_ndcg@10** | **0.9377** |
228
+ | cosine_mrr@10 | 0.9194 |
229
+ | cosine_map@100 | 0.9198 |
230
+
231
+ <!--
232
+ ## Bias, Risks and Limitations
233
+
234
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
235
+ -->
236
+
237
+ <!--
238
+ ### Recommendations
239
+
240
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
241
+ -->
242
+
243
+ ## Training Details
244
+
245
+ ### Training Dataset
246
+
247
+ #### train
248
+
249
+ * Dataset: train
250
+ * Size: 76,932 training samples
251
+ * Columns: <code>0</code> and <code>1</code>
252
+ * Approximate statistics based on the first 1000 samples:
253
+ | | 0 | 1 |
254
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
255
+ | type | string | string |
256
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.44 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.28 tokens</li><li>max: 27 tokens</li></ul> |
257
+ * Samples:
258
+ | 0 | 1 |
259
+ |:--------------------------------------------------------------------|:------------------------------------------------------------------|
260
+ | <code>query: 3D-TSV 기술의 구조는 어떻게 되어 있나요?</code> | <code>passage: 3 Dimension-Through Silicon Via (기술)</code> |
261
+ | <code>query: What is the structure of the 3D-TSV technology?</code> | <code>passage: 3 Dimension-Through Silicon Via (Technical)</code> |
262
+ | <code>query: 3 Dimension-Through Silicon Via의 줄임말이 뭐죠?</code> | <code>passage: 3D-TSV (기술)</code> |
263
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
264
+ ```json
265
+ {
266
+ "scale": 20.0,
267
+ "similarity_fct": "cos_sim",
268
+ "gather_across_devices": false
269
+ }
270
+ ```
271
+
272
+ ### Training Hyperparameters
273
+ #### Non-Default Hyperparameters
274
+
275
+ - `eval_strategy`: steps
276
+ - `per_device_train_batch_size`: 64
277
+ - `per_device_eval_batch_size`: 64
278
+ - `learning_rate`: 1e-05
279
+ - `weight_decay`: 0.01
280
+ - `lr_scheduler_type`: cosine
281
+ - `warmup_ratio`: 0.1
282
+ - `bf16`: True
283
+ - `batch_sampler`: no_duplicates
284
+
285
+ #### All Hyperparameters
286
+ <details><summary>Click to expand</summary>
287
+
288
+ - `overwrite_output_dir`: False
289
+ - `do_predict`: False
290
+ - `eval_strategy`: steps
291
+ - `prediction_loss_only`: True
292
+ - `per_device_train_batch_size`: 64
293
+ - `per_device_eval_batch_size`: 64
294
+ - `per_gpu_train_batch_size`: None
295
+ - `per_gpu_eval_batch_size`: None
296
+ - `gradient_accumulation_steps`: 1
297
+ - `eval_accumulation_steps`: None
298
+ - `torch_empty_cache_steps`: None
299
+ - `learning_rate`: 1e-05
300
+ - `weight_decay`: 0.01
301
+ - `adam_beta1`: 0.9
302
+ - `adam_beta2`: 0.999
303
+ - `adam_epsilon`: 1e-08
304
+ - `max_grad_norm`: 1.0
305
+ - `num_train_epochs`: 3
306
+ - `max_steps`: -1
307
+ - `lr_scheduler_type`: cosine
308
+ - `lr_scheduler_kwargs`: {}
309
+ - `warmup_ratio`: 0.1
310
+ - `warmup_steps`: 0
311
+ - `log_level`: passive
312
+ - `log_level_replica`: warning
313
+ - `log_on_each_node`: True
314
+ - `logging_nan_inf_filter`: True
315
+ - `save_safetensors`: True
316
+ - `save_on_each_node`: False
317
+ - `save_only_model`: False
318
+ - `restore_callback_states_from_checkpoint`: False
319
+ - `no_cuda`: False
320
+ - `use_cpu`: False
321
+ - `use_mps_device`: False
322
+ - `seed`: 42
323
+ - `data_seed`: None
324
+ - `jit_mode_eval`: False
325
+ - `use_ipex`: False
326
+ - `bf16`: True
327
+ - `fp16`: False
328
+ - `fp16_opt_level`: O1
329
+ - `half_precision_backend`: auto
330
+ - `bf16_full_eval`: False
331
+ - `fp16_full_eval`: False
332
+ - `tf32`: None
333
+ - `local_rank`: 0
334
+ - `ddp_backend`: None
335
+ - `tpu_num_cores`: None
336
+ - `tpu_metrics_debug`: False
337
+ - `debug`: []
338
+ - `dataloader_drop_last`: False
339
+ - `dataloader_num_workers`: 0
340
+ - `dataloader_prefetch_factor`: None
341
+ - `past_index`: -1
342
+ - `disable_tqdm`: False
343
+ - `remove_unused_columns`: True
344
+ - `label_names`: None
345
+ - `load_best_model_at_end`: False
346
+ - `ignore_data_skip`: False
347
+ - `fsdp`: []
348
+ - `fsdp_min_num_params`: 0
349
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
350
+ - `fsdp_transformer_layer_cls_to_wrap`: None
351
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
352
+ - `parallelism_config`: None
353
+ - `deepspeed`: None
354
+ - `label_smoothing_factor`: 0.0
355
+ - `optim`: adamw_torch_fused
356
+ - `optim_args`: None
357
+ - `adafactor`: False
358
+ - `group_by_length`: False
359
+ - `length_column_name`: length
360
+ - `ddp_find_unused_parameters`: None
361
+ - `ddp_bucket_cap_mb`: None
362
+ - `ddp_broadcast_buffers`: False
363
+ - `dataloader_pin_memory`: True
364
+ - `dataloader_persistent_workers`: False
365
+ - `skip_memory_metrics`: True
366
+ - `use_legacy_prediction_loop`: False
367
+ - `push_to_hub`: False
368
+ - `resume_from_checkpoint`: None
369
+ - `hub_model_id`: None
370
+ - `hub_strategy`: every_save
371
+ - `hub_private_repo`: None
372
+ - `hub_always_push`: False
373
+ - `hub_revision`: None
374
+ - `gradient_checkpointing`: False
375
+ - `gradient_checkpointing_kwargs`: None
376
+ - `include_inputs_for_metrics`: False
377
+ - `include_for_metrics`: []
378
+ - `eval_do_concat_batches`: True
379
+ - `fp16_backend`: auto
380
+ - `push_to_hub_model_id`: None
381
+ - `push_to_hub_organization`: None
382
+ - `mp_parameters`:
383
+ - `auto_find_batch_size`: False
384
+ - `full_determinism`: False
385
+ - `torchdynamo`: None
386
+ - `ray_scope`: last
387
+ - `ddp_timeout`: 1800
388
+ - `torch_compile`: False
389
+ - `torch_compile_backend`: None
390
+ - `torch_compile_mode`: None
391
+ - `include_tokens_per_second`: False
392
+ - `include_num_input_tokens_seen`: False
393
+ - `neftune_noise_alpha`: None
394
+ - `optim_target_modules`: None
395
+ - `batch_eval_metrics`: False
396
+ - `eval_on_start`: False
397
+ - `use_liger_kernel`: False
398
+ - `liger_kernel_config`: None
399
+ - `eval_use_gather_object`: False
400
+ - `average_tokens_across_devices`: False
401
+ - `prompts`: None
402
+ - `batch_sampler`: no_duplicates
403
+ - `multi_dataset_batch_sampler`: proportional
404
+ - `router_mapping`: {}
405
+ - `learning_rate_mapping`: {}
406
+
407
+ </details>
408
+
409
+ ### Training Logs
410
+ | Epoch | Step | Training Loss | e5-eval-real_cosine_ndcg@10 |
411
+ |:------:|:----:|:-------------:|:---------------------------:|
412
+ | 0.0008 | 1 | 3.1575 | - |
413
+ | 0.0831 | 100 | 1.6593 | - |
414
+ | 0.1663 | 200 | 0.1298 | 0.8389 |
415
+ | 0.2494 | 300 | 0.0848 | - |
416
+ | 0.3325 | 400 | 0.0716 | 0.8808 |
417
+ | 0.4156 | 500 | 0.0504 | - |
418
+ | 0.4988 | 600 | 0.0421 | 0.9033 |
419
+ | 0.5819 | 700 | 0.042 | - |
420
+ | 0.6650 | 800 | 0.0398 | 0.9095 |
421
+ | 0.7481 | 900 | 0.0384 | - |
422
+ | 0.8313 | 1000 | 0.0383 | 0.9111 |
423
+ | 0.9144 | 1100 | 0.0321 | - |
424
+ | 0.9975 | 1200 | 0.0317 | 0.9186 |
425
+ | 1.0806 | 1300 | 0.0299 | - |
426
+ | 1.1638 | 1400 | 0.0302 | 0.9161 |
427
+ | 1.2469 | 1500 | 0.025 | - |
428
+ | 1.3300 | 1600 | 0.0199 | 0.9261 |
429
+ | 1.4131 | 1700 | 0.0179 | - |
430
+ | 1.4963 | 1800 | 0.0117 | 0.9305 |
431
+ | 1.5794 | 1900 | 0.013 | - |
432
+ | 1.6625 | 2000 | 0.012 | 0.9308 |
433
+ | 1.7456 | 2100 | 0.0137 | - |
434
+ | 1.8288 | 2200 | 0.0141 | 0.9309 |
435
+ | 1.9119 | 2300 | 0.0127 | - |
436
+ | 1.9950 | 2400 | 0.0115 | 0.9332 |
437
+ | 2.0781 | 2500 | 0.0114 | - |
438
+ | 2.1613 | 2600 | 0.011 | 0.9351 |
439
+ | 2.2444 | 2700 | 0.0107 | - |
440
+ | 2.3275 | 2800 | 0.0087 | 0.9357 |
441
+ | 2.4106 | 2900 | 0.0084 | - |
442
+ | 2.4938 | 3000 | 0.0059 | 0.9366 |
443
+ | 2.5769 | 3100 | 0.0062 | - |
444
+ | 2.6600 | 3200 | 0.0071 | 0.9377 |
445
+ | 2.7431 | 3300 | 0.0072 | - |
446
+ | 2.8263 | 3400 | 0.0079 | 0.9376 |
447
+ | 2.9094 | 3500 | 0.0071 | - |
448
+ | 2.9925 | 3600 | 0.0068 | 0.9376 |
449
+ | -1 | -1 | - | 0.9377 |
450
+
451
+
452
+ ### Framework Versions
453
+ - Python: 3.12.11
454
+ - Sentence Transformers: 5.1.0
455
+ - Transformers: 4.56.1
456
+ - PyTorch: 2.8.0+cu126
457
+ - Accelerate: 1.10.1
458
+ - Datasets: 3.6.0
459
+ - Tokenizers: 0.22.0
460
+
461
+ ## Citation
462
+
463
+ ### BibTeX
464
+
465
+ #### Sentence Transformers
466
+ ```bibtex
467
+ @inproceedings{reimers-2019-sentence-bert,
468
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
469
+ author = "Reimers, Nils and Gurevych, Iryna",
470
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
471
+ month = "11",
472
+ year = "2019",
473
+ publisher = "Association for Computational Linguistics",
474
+ url = "https://arxiv.org/abs/1908.10084",
475
+ }
476
+ ```
477
+
478
+ #### MultipleNegativesRankingLoss
479
+ ```bibtex
480
+ @misc{henderson2017efficient,
481
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
482
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
483
+ year={2017},
484
+ eprint={1705.00652},
485
+ archivePrefix={arXiv},
486
+ primaryClass={cs.CL}
487
+ }
488
+ ```
489
+
490
+ <!--
491
+ ## Glossary
492
+
493
+ *Clearly define terms in order to be accessible across audiences.*
494
+ -->
495
+
496
+ <!--
497
+ ## Model Card Authors
498
+
499
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
500
+ -->
501
+
502
+ <!--
503
+ ## Model Card Contact
504
+
505
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
506
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "dtype": "float32",
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.56.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.1.0",
5
+ "transformers": "4.56.1",
6
+ "pytorch": "2.8.0+cu126"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94d7068475f633c0337dc3d2676dca52e219d0cc57e7a6e68ea57fdd0b6f67c8
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a514807cffabd8abaf028cfaffe7ff0c4f60b97ea2db80c41f14172ae6b018ca
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }