--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-lf-invalidation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.676595744680851 --- # swinv2-tiny-patch4-window8-256-finetuned-lf-invalidation This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7236 - Accuracy: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.5608 | 0.9796 | 12 | 0.6779 | 0.5532 | | 0.5249 | 1.9592 | 24 | 0.5234 | 0.7617 | | 0.4404 | 2.9388 | 36 | 0.5121 | 0.7766 | | 0.3893 | 4.0 | 49 | 0.3981 | 0.8128 | | 0.4083 | 4.9796 | 61 | 0.5870 | 0.6447 | | 0.3725 | 5.9592 | 73 | 0.4991 | 0.7553 | | 0.3909 | 6.9388 | 85 | 0.4062 | 0.8426 | | 0.3799 | 8.0 | 98 | 0.5115 | 0.7574 | | 0.3332 | 8.9796 | 110 | 0.4470 | 0.8277 | | 0.3108 | 9.9592 | 122 | 0.3451 | 0.8681 | | 0.308 | 10.9388 | 134 | 0.5822 | 0.7511 | | 0.3699 | 12.0 | 147 | 0.4653 | 0.8106 | | 0.2945 | 12.9796 | 159 | 0.4171 | 0.8426 | | 0.2934 | 13.9592 | 171 | 0.4366 | 0.8234 | | 0.2719 | 14.9388 | 183 | 0.5905 | 0.7638 | | 0.3287 | 16.0 | 196 | 0.6654 | 0.7234 | | 0.271 | 16.9796 | 208 | 0.6328 | 0.7447 | | 0.3018 | 17.9592 | 220 | 0.4671 | 0.8255 | | 0.2763 | 18.9388 | 232 | 0.6032 | 0.7468 | | 0.2834 | 20.0 | 245 | 0.7016 | 0.7 | | 0.2653 | 20.9796 | 257 | 0.4089 | 0.8468 | | 0.2666 | 21.9592 | 269 | 0.7905 | 0.6447 | | 0.2941 | 22.9388 | 281 | 0.6064 | 0.7553 | | 0.2792 | 24.0 | 294 | 0.7444 | 0.7085 | | 0.2019 | 24.9796 | 306 | 0.7595 | 0.7170 | | 0.2552 | 25.9592 | 318 | 1.0296 | 0.5660 | | 0.2451 | 26.9388 | 330 | 0.5999 | 0.7340 | | 0.2126 | 28.0 | 343 | 0.5730 | 0.7660 | | 0.2214 | 28.9796 | 355 | 0.9756 | 0.5809 | | 0.2633 | 29.9592 | 367 | 0.4134 | 0.8404 | | 0.2427 | 30.9388 | 379 | 0.8228 | 0.6362 | | 0.2405 | 32.0 | 392 | 0.5279 | 0.7723 | | 0.2078 | 32.9796 | 404 | 0.6581 | 0.6979 | | 0.2201 | 33.9592 | 416 | 0.9132 | 0.5745 | | 0.2481 | 34.9388 | 428 | 0.9526 | 0.5617 | | 0.248 | 36.0 | 441 | 0.8979 | 0.5553 | | 0.2209 | 36.9796 | 453 | 0.8351 | 0.5915 | | 0.2253 | 37.9592 | 465 | 0.6744 | 0.6851 | | 0.2447 | 38.9388 | 477 | 0.7794 | 0.6404 | | 0.2049 | 40.0 | 490 | 0.6136 | 0.7468 | | 0.1965 | 40.9796 | 502 | 0.6582 | 0.7340 | | 0.2638 | 41.9592 | 514 | 0.7487 | 0.6766 | | 0.2297 | 42.9388 | 526 | 0.7282 | 0.6702 | | 0.2163 | 44.0 | 539 | 0.5713 | 0.7511 | | 0.2016 | 44.9796 | 551 | 0.5994 | 0.7319 | | 0.1739 | 45.9592 | 563 | 0.6865 | 0.6915 | | 0.2497 | 46.9388 | 575 | 0.6901 | 0.6957 | | 0.2293 | 48.0 | 588 | 0.7150 | 0.6851 | | 0.2237 | 48.9796 | 600 | 0.7236 | 0.6766 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1