--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: [] --- # my_awesome_wnut_model This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1117 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 147 | 0.2772 | 0.0 | 0.0 | 0.0 | 0.9110 | | No log | 2.0 | 294 | 0.1972 | 0.0 | 0.0 | 0.0 | 0.9223 | | No log | 3.0 | 441 | 0.1520 | 0.0 | 0.0 | 0.0 | 0.9420 | | 0.2425 | 4.0 | 588 | 0.1341 | 0.0 | 0.0 | 0.0 | 0.9511 | | 0.2425 | 5.0 | 735 | 0.1241 | 0.0 | 0.0 | 0.0 | 0.9538 | | 0.2425 | 6.0 | 882 | 0.1184 | 0.0 | 0.0 | 0.0 | 0.9572 | | 0.1179 | 7.0 | 1029 | 0.1154 | 0.0 | 0.0 | 0.0 | 0.9574 | | 0.1179 | 8.0 | 1176 | 0.1131 | 0.0 | 0.0 | 0.0 | 0.9583 | | 0.1179 | 9.0 | 1323 | 0.1120 | 0.0 | 0.0 | 0.0 | 0.9594 | | 0.1179 | 10.0 | 1470 | 0.1117 | 0.0 | 0.0 | 0.0 | 0.9592 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0