carolineec commited on
Commit
892a090
·
verified ·
1 Parent(s): d611ad3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -4
README.md CHANGED
@@ -2,9 +2,55 @@
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Code: [More Information Needed]
9
- - Paper: [More Information Needed]
10
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
5
+ license: mit
6
+ datasets:
7
+ - carolineec/CyclePrefDB-I2T
8
+ language:
9
+ - en
10
  ---
11
 
12
+ # Model Card for CycleReward-I2T
13
+
14
+ [Project page](https://cyclereward.github.io) | [Paper](https://huggingface.co/papers/2506.02095) | [Code](https://github.com/hjbahng/cyclereward)
15
+
16
+ Reward model for image-text alignment trained on image-to-text comparison pairs from [CyclePrefDB-I2T](https://huggingface.co/datasets/carolineec/CyclePrefDB-I2T).
17
+
18
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.
19
+
20
+
21
+ ## Loading the model
22
+
23
+ Download the `model.py`, `med_config.json` files and `blip` folder from this repository. You can load the pretrained model using the code below:
24
+
25
+
26
+ ```
27
+ import torch
28
+ from PIL import Image
29
+ from model import CycleReward
30
+
31
+ device='cuda'
32
+ model = CycleReward.from_pretrained("carolineec/CycleReward-I2T")
33
+ model.to(device)
34
+ model.eval()
35
+
36
+ preprocess = model.preprocess
37
+ image_path = "cat.jpg"
38
+ caption = "a photo of a cat"
39
+ image = preprocess(Image.open(image_path)).unsqueeze(0).to(device)
40
+ print('prepared data')
41
+
42
+ score = model.score(image, caption)
43
+ print('my score:', score.item())
44
+
45
+ ```
46
+
47
+ ## Citation
48
+
49
+ ```
50
+ @article{bahng2025cyclereward,
51
+ title={Cycle Consistency as Reward: Learning Image-Text Alignment without Human Preferences},
52
+ author= {Bahng, Hyojin and Chan, Caroline and Durand, Fredo and Isola, Phillip},
53
+ journal={arXiv preprint arXiv:2506.02095},
54
+ year={2025}
55
+ }
56
+ ```