|  | """A simple, flexible implementation of a GPT model. | 
					
						
						|  |  | 
					
						
						|  | Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py | 
					
						
						|  | """ | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | 
					
						
						|  | from .attention import attn_bias_shape, build_attn_bias | 
					
						
						|  | from .blocks import MPTBlock | 
					
						
						|  | from .custom_embedding import SharedEmbedding | 
					
						
						|  | from .norm import NORM_CLASS_REGISTRY | 
					
						
						|  | from .configuration_mpt import MPTConfig | 
					
						
						|  | from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising | 
					
						
						|  | from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm | 
					
						
						|  | from .meta_init_context import init_empty_weights | 
					
						
						|  | from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_ | 
					
						
						|  | try: | 
					
						
						|  | from .flash_attn_triton import flash_attn_func | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  | Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] | 
					
						
						|  |  | 
					
						
						|  | class MPTPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = MPTConfig | 
					
						
						|  | base_model_prefix = 'model' | 
					
						
						|  | _no_split_modules = ['MPTBlock'] | 
					
						
						|  |  | 
					
						
						|  | class MPTModel(MPTPreTrainedModel): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MPTConfig): | 
					
						
						|  | config._validate_config() | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.attn_impl = config.attn_config['attn_impl'] | 
					
						
						|  | self.prefix_lm = config.attn_config['prefix_lm'] | 
					
						
						|  | self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] | 
					
						
						|  | self.alibi = config.attn_config['alibi'] | 
					
						
						|  | self.alibi_bias_max = config.attn_config['alibi_bias_max'] | 
					
						
						|  | if config.init_device == 'mixed': | 
					
						
						|  | if dist.get_local_rank() == 0: | 
					
						
						|  | config.init_device = 'cpu' | 
					
						
						|  | else: | 
					
						
						|  | config.init_device = 'meta' | 
					
						
						|  | if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): | 
					
						
						|  | norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) | 
					
						
						|  | raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') | 
					
						
						|  | norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] | 
					
						
						|  | self.embedding_fraction = config.embedding_fraction | 
					
						
						|  | self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) | 
					
						
						|  | if not self.alibi: | 
					
						
						|  | self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) | 
					
						
						|  | self.emb_drop = nn.Dropout(config.emb_pdrop) | 
					
						
						|  | self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) | 
					
						
						|  | self.norm_f = norm_class(config.d_model, device=config.init_device) | 
					
						
						|  | if config.init_device != 'meta': | 
					
						
						|  | print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.') | 
					
						
						|  | self.apply(self.param_init_fn) | 
					
						
						|  | self.is_causal = not self.prefix_lm | 
					
						
						|  | self._attn_bias_initialized = False | 
					
						
						|  | self.attn_bias = None | 
					
						
						|  | self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) | 
					
						
						|  | if config.no_bias: | 
					
						
						|  | for module in self.modules(): | 
					
						
						|  | if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): | 
					
						
						|  | if config.verbose: | 
					
						
						|  | warnings.warn(f'Removing bias ({module.bias}) from {module}.') | 
					
						
						|  | module.register_parameter('bias', None) | 
					
						
						|  | if config.verbose and config.verbose > 2: | 
					
						
						|  | print(self) | 
					
						
						|  | if 'verbose' not in self.config.init_config: | 
					
						
						|  | self.config.init_config['verbose'] = self.config.verbose | 
					
						
						|  | if self.config.init_config['verbose'] > 1: | 
					
						
						|  | init_fn_name = self.config.init_config['name'] | 
					
						
						|  | warnings.warn(f'Using {init_fn_name} initialization.') | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.wte = value | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None): | 
					
						
						|  | if not self._attn_bias_initialized: | 
					
						
						|  | if self.attn_bias_shape: | 
					
						
						|  | self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) | 
					
						
						|  | self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) | 
					
						
						|  | self._attn_bias_initialized = True | 
					
						
						|  | if self.attn_impl == 'flash': | 
					
						
						|  | return (self.attn_bias, attention_mask) | 
					
						
						|  | if self.attn_bias is not None: | 
					
						
						|  | self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) | 
					
						
						|  | attn_bias = self.attn_bias | 
					
						
						|  | if self.prefix_lm: | 
					
						
						|  | assert isinstance(attn_bias, torch.Tensor) | 
					
						
						|  | assert isinstance(prefix_mask, torch.Tensor) | 
					
						
						|  | attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) | 
					
						
						|  | if self.attn_uses_sequence_id and sequence_id is not None: | 
					
						
						|  | assert isinstance(attn_bias, torch.Tensor) | 
					
						
						|  | attn_bias = self._apply_sequence_id(attn_bias, sequence_id) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | s_k = attention_mask.shape[-1] | 
					
						
						|  | if attn_bias is None: | 
					
						
						|  | attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | _s_k = max(0, attn_bias.size(-1) - s_k) | 
					
						
						|  | attn_bias = attn_bias[:, :, :, _s_k:] | 
					
						
						|  | if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: | 
					
						
						|  | raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.') | 
					
						
						|  | min_val = torch.finfo(attn_bias.dtype).min | 
					
						
						|  | attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) | 
					
						
						|  | return (attn_bias, None) | 
					
						
						|  |  | 
					
						
						|  | def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): | 
					
						
						|  | (s_k, s_q) = attn_bias.shape[-2:] | 
					
						
						|  | if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: | 
					
						
						|  | raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.') | 
					
						
						|  | seq_len = prefix_mask.shape[-1] | 
					
						
						|  | if seq_len > self.config.max_seq_len: | 
					
						
						|  | raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}') | 
					
						
						|  | attn_bias = attn_bias[..., :seq_len, :seq_len] | 
					
						
						|  | causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) | 
					
						
						|  | prefix = prefix_mask.view(-1, 1, 1, seq_len) | 
					
						
						|  | cannot_attend = ~torch.logical_or(causal, prefix.bool()) | 
					
						
						|  | min_val = torch.finfo(attn_bias.dtype).min | 
					
						
						|  | attn_bias = attn_bias.masked_fill(cannot_attend, min_val) | 
					
						
						|  | return attn_bias | 
					
						
						|  |  | 
					
						
						|  | def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): | 
					
						
						|  | seq_len = sequence_id.shape[-1] | 
					
						
						|  | if seq_len > self.config.max_seq_len: | 
					
						
						|  | raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}') | 
					
						
						|  | attn_bias = attn_bias[..., :seq_len, :seq_len] | 
					
						
						|  | cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) | 
					
						
						|  | min_val = torch.finfo(attn_bias.dtype).min | 
					
						
						|  | attn_bias = attn_bias.masked_fill(cannot_attend, min_val) | 
					
						
						|  | return attn_bias | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None): | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.return_dict | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask.bool() | 
					
						
						|  | if prefix_mask is not None: | 
					
						
						|  | prefix_mask = prefix_mask.bool() | 
					
						
						|  | if not return_dict: | 
					
						
						|  | raise NotImplementedError('return_dict False is not implemented yet for MPT') | 
					
						
						|  | if output_attentions: | 
					
						
						|  | if self.attn_impl != 'torch': | 
					
						
						|  | raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.') | 
					
						
						|  | if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training: | 
					
						
						|  | raise NotImplementedError('MPT does not support training with left padding.') | 
					
						
						|  | if self.prefix_lm and prefix_mask is None: | 
					
						
						|  | raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.') | 
					
						
						|  | if self.training: | 
					
						
						|  | if self.attn_uses_sequence_id and sequence_id is None: | 
					
						
						|  | raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') | 
					
						
						|  | elif self.attn_uses_sequence_id is False and sequence_id is not None: | 
					
						
						|  | warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') | 
					
						
						|  | S = input_ids.size(1) | 
					
						
						|  | assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' | 
					
						
						|  | tok_emb = self.wte(input_ids) | 
					
						
						|  | if self.alibi: | 
					
						
						|  | x = tok_emb | 
					
						
						|  | else: | 
					
						
						|  | past_position = 0 | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if len(past_key_values) != self.config.n_layers: | 
					
						
						|  | raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') | 
					
						
						|  | past_position = past_key_values[0][0].size(1) | 
					
						
						|  | if self.attn_impl == 'torch': | 
					
						
						|  | past_position = past_key_values[0][0].size(3) | 
					
						
						|  | if S + past_position > self.config.max_seq_len: | 
					
						
						|  | raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') | 
					
						
						|  | pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) | 
					
						
						|  | pos_emb = self.wpe(pos) | 
					
						
						|  | x = tok_emb + pos_emb | 
					
						
						|  | if self.embedding_fraction == 1: | 
					
						
						|  | x = self.emb_drop(x) | 
					
						
						|  | else: | 
					
						
						|  | x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) | 
					
						
						|  | assert isinstance(self.emb_drop, nn.Module) | 
					
						
						|  | x = self.emb_drop(x_shrunk) | 
					
						
						|  | (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) | 
					
						
						|  | if use_cache and past_key_values is None: | 
					
						
						|  | past_key_values = [() for _ in range(self.config.n_layers)] | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | for (b_idx, block) in enumerate(self.blocks): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | assert all_hidden_states is not None | 
					
						
						|  | all_hidden_states = all_hidden_states + (x,) | 
					
						
						|  | past_key_value = past_key_values[b_idx] if past_key_values is not None else None | 
					
						
						|  | (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal) | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | past_key_values[b_idx] = past_key_value | 
					
						
						|  | if output_attentions: | 
					
						
						|  | assert all_self_attns is not None | 
					
						
						|  | all_self_attns = all_self_attns + (attn_weights,) | 
					
						
						|  | x = self.norm_f(x) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | assert all_hidden_states is not None | 
					
						
						|  | all_hidden_states = all_hidden_states + (x,) | 
					
						
						|  | return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns) | 
					
						
						|  |  | 
					
						
						|  | def param_init_fn(self, module): | 
					
						
						|  | init_fn_name = self.config.init_config['name'] | 
					
						
						|  | MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) | 
					
						
						|  |  | 
					
						
						|  | def fsdp_wrap_fn(self, module): | 
					
						
						|  | return isinstance(module, MPTBlock) | 
					
						
						|  |  | 
					
						
						|  | def activation_checkpointing_fn(self, module): | 
					
						
						|  | return isinstance(module, MPTBlock) | 
					
						
						|  |  | 
					
						
						|  | class MPTForCausalLM(MPTPreTrainedModel): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: MPTConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | if not config.tie_word_embeddings: | 
					
						
						|  | raise ValueError('MPTForCausalLM only supports tied word embeddings') | 
					
						
						|  | self.transformer = MPTModel(config) | 
					
						
						|  | for child in self.transformer.children(): | 
					
						
						|  | if isinstance(child, torch.nn.ModuleList): | 
					
						
						|  | continue | 
					
						
						|  | if isinstance(child, torch.nn.Module): | 
					
						
						|  | child._fsdp_wrap = True | 
					
						
						|  | self.logit_scale = None | 
					
						
						|  | if config.logit_scale is not None: | 
					
						
						|  | logit_scale = config.logit_scale | 
					
						
						|  | if isinstance(logit_scale, str): | 
					
						
						|  | if logit_scale == 'inv_sqrt_d_model': | 
					
						
						|  | logit_scale = 1 / math.sqrt(config.d_model) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") | 
					
						
						|  | self.logit_scale = logit_scale | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.transformer.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.transformer.wte = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.transformer.wte | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.transformer.wte = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.transformer = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.transformer | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None): | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.return_dict | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) | 
					
						
						|  | logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True) | 
					
						
						|  | if self.logit_scale is not None: | 
					
						
						|  | if self.logit_scale == 0: | 
					
						
						|  | warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') | 
					
						
						|  | logits *= self.logit_scale | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = torch.roll(labels, shifts=-1) | 
					
						
						|  | labels[:, -1] = -100 | 
					
						
						|  | loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) | 
					
						
						|  | return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions) | 
					
						
						|  |  | 
					
						
						|  | def param_init_fn(self, module): | 
					
						
						|  | init_fn_name = self.config.init_config['name'] | 
					
						
						|  | MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) | 
					
						
						|  |  | 
					
						
						|  | def fsdp_wrap_fn(self, module): | 
					
						
						|  | return isinstance(module, MPTBlock) | 
					
						
						|  |  | 
					
						
						|  | def activation_checkpointing_fn(self, module): | 
					
						
						|  | return isinstance(module, MPTBlock) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | 
					
						
						|  | if inputs_embeds is not None: | 
					
						
						|  | raise NotImplementedError('inputs_embeds is not implemented for MPT yet') | 
					
						
						|  | attention_mask = kwargs['attention_mask'].bool() | 
					
						
						|  | if attention_mask[:, -1].sum() != attention_mask.shape[0]: | 
					
						
						|  | raise NotImplementedError('MPT does not support generation with right padding.') | 
					
						
						|  | if self.transformer.attn_uses_sequence_id and self.training: | 
					
						
						|  | sequence_id = torch.zeros_like(input_ids[:1]) | 
					
						
						|  | else: | 
					
						
						|  | sequence_id = None | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | input_ids = input_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | if self.transformer.prefix_lm: | 
					
						
						|  | prefix_mask = torch.ones_like(attention_mask) | 
					
						
						|  | if kwargs.get('use_cache') == False: | 
					
						
						|  | raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') | 
					
						
						|  | else: | 
					
						
						|  | prefix_mask = None | 
					
						
						|  | return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)} | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | """Used by HuggingFace generate when using beam search with kv-caching. | 
					
						
						|  |  | 
					
						
						|  | See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 | 
					
						
						|  | for an example in transformers. | 
					
						
						|  | """ | 
					
						
						|  | reordered_past = [] | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] | 
					
						
						|  | return reordered_past |