|
|
import torch
|
|
|
|
|
|
from torch import nn
|
|
|
import torchvision
|
|
|
from torchvision import transforms, datasets
|
|
|
from torch.utils.data import DataLoader
|
|
|
from tqdm.auto import tqdm
|
|
|
from pathlib import Path
|
|
|
from PIL import Image
|
|
|
|
|
|
test_transformer = transforms.Compose([
|
|
|
transforms.Resize((64,64)),
|
|
|
transforms.ToTensor()
|
|
|
])
|
|
|
class Tinyvgg(nn.Module):
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
self.firstlayer = nn.Sequential(
|
|
|
nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3, stride=1, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.Conv2d(in_channels=10, out_channels=10, kernel_size=3, stride=1, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
|
|
|
)
|
|
|
self.secondlayer = nn.Sequential(
|
|
|
nn.Conv2d(in_channels=10, out_channels=10, kernel_size=3, stride=1, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.Conv2d(in_channels=10, out_channels=10, kernel_size=3, stride=1, padding=1),
|
|
|
nn.ReLU(),
|
|
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
|
|
)
|
|
|
self.classifier = nn.Sequential(
|
|
|
nn.Flatten(),
|
|
|
nn.Linear(in_features=2560,out_features=2),
|
|
|
)
|
|
|
|
|
|
def forward(self, x):
|
|
|
return self.classifier(self.secondlayer(self.firstlayer(x)))
|
|
|
|
|
|
|
|
|
device = torch.device("cuda")
|
|
|
|
|
|
model12 = Tinyvgg()
|
|
|
model12 = model12.to(device)
|
|
|
|
|
|
model12.load_state_dict(torch.load("C:/pytorchprojesi/model12_weights.pth", map_location=device))
|
|
|
|
|
|
model12.eval()
|
|
|
with torch.inference_mode():
|
|
|
image_path = "C:/Users/ceyhu/Downloads/fe.png"
|
|
|
image = Image.open(image_path).convert('RGB')
|
|
|
image = test_transformer(image).unsqueeze(0).to(device)
|
|
|
output = model12(image)
|
|
|
prediction = torch.softmax(output,dim=1)
|
|
|
print(prediction)
|
|
|
|
|
|
|