Update model on main, checkpoint
Browse files- README.md +43 -0
- config.json +35 -0
- modeling_novomolgen.py +341 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +203 -0
- tokenizer_config.json +43 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,43 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            datasets:
         | 
| 4 | 
            +
              - ZINC-22
         | 
| 5 | 
            +
            language:
         | 
| 6 | 
            +
              - en
         | 
| 7 | 
            +
            tags:
         | 
| 8 | 
            +
              - molecular-generation
         | 
| 9 | 
            +
              - drug-discovery
         | 
| 10 | 
            +
              - llama
         | 
| 11 | 
            +
              - flash-attention
         | 
| 12 | 
            +
            pipeline_tag: text-generation
         | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # NovoMolGen
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            NovoMolGen is a family of molecular foundation models trained on 1.5 billion ZINC‑22 molecules using Llama architectures and FlashAttention. It achieves state‑of‑the‑art performance on both unconstrained and goal‑directed molecule generation tasks.
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            ## How to load
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            ```python
         | 
| 22 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 23 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_157M_SMILES_AtomWise", trust_remote_code=True)
         | 
| 24 | 
            +
            model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_157M_SMILES_AtomWise", trust_remote_code=True)
         | 
| 25 | 
            +
            ```
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ## Quickstart
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ```python
         | 
| 30 | 
            +
            outputs = model.sample(tokenizer=tokenizer, batch_size=4)
         | 
| 31 | 
            +
            print(outputs['SMILES'])
         | 
| 32 | 
            +
            ```
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ## Citation
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ```bibtex
         | 
| 37 | 
            +
            @article{chitsaz2024novomolgen,
         | 
| 38 | 
            +
              title={NovoMolGen: Rethinking Molecular Language Model Pretraining},
         | 
| 39 | 
            +
              author={Chitsaz, Kamran and Balaji, Roshan and Fournier, Quentin and Bhatt, Nirav Pravinbhai and Chandar, Sarath},
         | 
| 40 | 
            +
              journal={arXiv preprint},
         | 
| 41 | 
            +
              year={2025},
         | 
| 42 | 
            +
            }
         | 
| 43 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "attention_bias": false,
         | 
| 3 | 
            +
              "attention_dropout": 0.0,
         | 
| 4 | 
            +
              "auto_map": {
         | 
| 5 | 
            +
                "AutoModelForCausalLM": "modeling_novomolgen.NovoMolGen"
         | 
| 6 | 
            +
              },
         | 
| 7 | 
            +
              "bos_token_id": 2,
         | 
| 8 | 
            +
              "eos_token_id": 3,
         | 
| 9 | 
            +
              "fused_bias_fc": false,
         | 
| 10 | 
            +
              "fused_dropout_add_ln": false,
         | 
| 11 | 
            +
              "fused_mlp": false,
         | 
| 12 | 
            +
              "head_dim": 64,
         | 
| 13 | 
            +
              "hidden_act": "silu",
         | 
| 14 | 
            +
              "hidden_size": 640,
         | 
| 15 | 
            +
              "initializer_range": 0.02,
         | 
| 16 | 
            +
              "intermediate_size": 2560,
         | 
| 17 | 
            +
              "loss_type": "ForCausalLM",
         | 
| 18 | 
            +
              "max_position_embeddings": 2048,
         | 
| 19 | 
            +
              "max_seq_length": 64,
         | 
| 20 | 
            +
              "mlp_bias": false,
         | 
| 21 | 
            +
              "model_type": "llama",
         | 
| 22 | 
            +
              "num_attention_heads": 10,
         | 
| 23 | 
            +
              "num_hidden_layers": 24,
         | 
| 24 | 
            +
              "num_key_value_heads": 10,
         | 
| 25 | 
            +
              "pretraining_tp": 1,
         | 
| 26 | 
            +
              "residual_in_fp32": true,
         | 
| 27 | 
            +
              "rms_norm_eps": 1e-06,
         | 
| 28 | 
            +
              "rope_scaling": null,
         | 
| 29 | 
            +
              "rope_theta": 10000.0,
         | 
| 30 | 
            +
              "tie_word_embeddings": false,
         | 
| 31 | 
            +
              "transformers_version": "4.46.2",
         | 
| 32 | 
            +
              "use_cache": true,
         | 
| 33 | 
            +
              "use_flash_attn": true,
         | 
| 34 | 
            +
              "vocab_size": 84
         | 
| 35 | 
            +
            }
         | 
    	
        modeling_novomolgen.py
    ADDED
    
    | @@ -0,0 +1,341 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import copy
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os.path
         | 
| 4 | 
            +
            import re
         | 
| 5 | 
            +
            import shutil
         | 
| 6 | 
            +
            import inspect
         | 
| 7 | 
            +
            from typing import Optional, Union
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torch.nn.functional as F
         | 
| 11 | 
            +
            from transformers import LlamaConfig
         | 
| 12 | 
            +
            from transformers.loss.loss_utils import LOSS_MAPPING
         | 
| 13 | 
            +
            from transformers.modeling_outputs import CausalLMOutput
         | 
| 14 | 
            +
            from transformers.utils.hub import cached_file, get_checkpoint_shard_files
         | 
| 15 | 
            +
            from transformers.utils import (
         | 
| 16 | 
            +
                SAFE_WEIGHTS_NAME,
         | 
| 17 | 
            +
                WEIGHTS_INDEX_NAME,
         | 
| 18 | 
            +
                WEIGHTS_NAME,
         | 
| 19 | 
            +
            )
         | 
| 20 | 
            +
            from transformers.modeling_utils import unwrap_model, logger
         | 
| 21 | 
            +
            from functools import partial
         | 
| 22 | 
            +
            from safetensors.torch import load_file as safe_load_file
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            try:
         | 
| 25 | 
            +
                from flash_attn.models.gpt import GPTLMHeadModel
         | 
| 26 | 
            +
            except ImportError:
         | 
| 27 | 
            +
                GPTLMHeadModel = None
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            try:
         | 
| 30 | 
            +
                from flash_attn.models.llama import llama_config_to_gpt2_config, inv_remap_state_dict_hf_llama
         | 
| 31 | 
            +
            except ImportError:
         | 
| 32 | 
            +
                llama_config_to_gpt2_config = None
         | 
| 33 | 
            +
                inv_remap_state_dict_hf_llama = None
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def state_dict_from_pretrained(model_name, checkpoint_path: str = "", device=None, dtype=None):
         | 
| 37 | 
            +
                """
         | 
| 38 | 
            +
                code modified from: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/pretrained.py
         | 
| 39 | 
            +
                """
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                # If not fp32, then we don't want to load directly to the GPU
         | 
| 42 | 
            +
                mapped_device = "cpu" if dtype not in [torch.float32, None] else device
         | 
| 43 | 
            +
                is_sharded = False
         | 
| 44 | 
            +
                load_safe = False
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                # Try loading from HF hub instead of from local files
         | 
| 47 | 
            +
                resolved_archive_file = cached_file(model_name, os.path.join(checkpoint_path, WEIGHTS_NAME),
         | 
| 48 | 
            +
                                                    _raise_exceptions_for_missing_entries=False)
         | 
| 49 | 
            +
                if resolved_archive_file is None:
         | 
| 50 | 
            +
                    resolved_archive_file = cached_file(model_name, os.path.join(checkpoint_path, WEIGHTS_INDEX_NAME),
         | 
| 51 | 
            +
                                                        _raise_exceptions_for_missing_entries=False)
         | 
| 52 | 
            +
                    if resolved_archive_file is not None:
         | 
| 53 | 
            +
                        is_sharded = True
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                if resolved_archive_file is None:
         | 
| 56 | 
            +
                    raise EnvironmentError(f"Model name {model_name} was not found.")
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                if load_safe:
         | 
| 59 | 
            +
                    loader = partial(safe_load_file, device=mapped_device)
         | 
| 60 | 
            +
                else:
         | 
| 61 | 
            +
                    loader = partial(torch.load, map_location=mapped_device)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                if is_sharded:
         | 
| 64 | 
            +
                    # resolved_archive_file becomes a list of files that point to the different
         | 
| 65 | 
            +
                    # checkpoint shards in this case.
         | 
| 66 | 
            +
                    resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
         | 
| 67 | 
            +
                        model_name, resolved_archive_file
         | 
| 68 | 
            +
                    )
         | 
| 69 | 
            +
                    state_dict = {}
         | 
| 70 | 
            +
                    for sharded_file in resolved_archive_file:
         | 
| 71 | 
            +
                        state_dict.update(loader(sharded_file))
         | 
| 72 | 
            +
                else:
         | 
| 73 | 
            +
                    state_dict = loader(resolved_archive_file)
         | 
| 74 | 
            +
                # Convert dtype before moving to GPU to save memory
         | 
| 75 | 
            +
                if dtype is not None:
         | 
| 76 | 
            +
                    state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
         | 
| 77 | 
            +
                state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                return state_dict
         | 
| 80 | 
            +
             | 
| 81 | 
            +
             | 
| 82 | 
            +
            class NovoMolGenConfig(LlamaConfig):
         | 
| 83 | 
            +
                # model_type = "NovoMolGen"
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                def __init__(self,
         | 
| 86 | 
            +
                             use_flash_attn: bool = True,
         | 
| 87 | 
            +
                             fused_bias_fc: bool = True,
         | 
| 88 | 
            +
                             fused_mlp: bool = False,
         | 
| 89 | 
            +
                             fused_dropout_add_ln: bool = True,
         | 
| 90 | 
            +
                             residual_in_fp32: bool = True,
         | 
| 91 | 
            +
                             loss_type: str = 'ForCausalLM',
         | 
| 92 | 
            +
                             **kwargs
         | 
| 93 | 
            +
                             ):
         | 
| 94 | 
            +
                    super().__init__(**kwargs)
         | 
| 95 | 
            +
                    self.use_flash_attn = use_flash_attn
         | 
| 96 | 
            +
                    self.fused_bias_fc = fused_bias_fc
         | 
| 97 | 
            +
                    self.fused_mlp = fused_mlp
         | 
| 98 | 
            +
                    self.fused_dropout_add_ln = fused_dropout_add_ln
         | 
| 99 | 
            +
                    self.residual_in_fp32 = residual_in_fp32
         | 
| 100 | 
            +
                    self.loss_type = loss_type
         | 
| 101 | 
            +
                    self.auto_map = {"AutoModelForCausalLM": "modeling_novomolgen.NovoMolGen"}
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                @classmethod
         | 
| 104 | 
            +
                def from_pretrained(
         | 
| 105 | 
            +
                        cls,
         | 
| 106 | 
            +
                        pretrained_model_name_or_path: Union[str, os.PathLike],
         | 
| 107 | 
            +
                        checkpoint_path: str = "",
         | 
| 108 | 
            +
                        cache_dir: Optional[Union[str, os.PathLike]] = None,
         | 
| 109 | 
            +
                        force_download: bool = False,
         | 
| 110 | 
            +
                        local_files_only: bool = False,
         | 
| 111 | 
            +
                        token: Optional[Union[str, bool]] = None,
         | 
| 112 | 
            +
                        revision: str = "main",
         | 
| 113 | 
            +
                        **kwargs,
         | 
| 114 | 
            +
                ):
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    resolved_archive_config_file = cached_file(pretrained_model_name_or_path,
         | 
| 117 | 
            +
                                                               os.path.join(checkpoint_path, "config.json"),
         | 
| 118 | 
            +
                                                               _raise_exceptions_for_missing_entries=False)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    if resolved_archive_config_file is not None:
         | 
| 121 | 
            +
                        with open(resolved_archive_config_file, "r", encoding="utf-8") as reader:
         | 
| 122 | 
            +
                            text = reader.read()
         | 
| 123 | 
            +
                        config_dict = json.loads(text)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    else:
         | 
| 126 | 
            +
                        raise EnvironmentError(f"config for {pretrained_model_name_or_path} was not found.")
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
         | 
| 129 | 
            +
                        print(
         | 
| 130 | 
            +
                            f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
         | 
| 131 | 
            +
                            f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
         | 
| 132 | 
            +
                        )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    return cls.from_dict(config_dict, **kwargs)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
            +
            class NovoMolGen(GPTLMHeadModel):
         | 
| 138 | 
            +
                def __init__(
         | 
| 139 | 
            +
                        self,
         | 
| 140 | 
            +
                        config: NovoMolGenConfig,
         | 
| 141 | 
            +
                        mol_type: str = "SMILES",
         | 
| 142 | 
            +
                ):
         | 
| 143 | 
            +
                    self.base_config = config
         | 
| 144 | 
            +
                    self.mol_type = mol_type
         | 
| 145 | 
            +
                    config = llama_config_to_gpt2_config(config)
         | 
| 146 | 
            +
                    config.use_flash_attn = self.base_config.use_flash_attn
         | 
| 147 | 
            +
                    config.fused_bias_fc = self.base_config.fused_bias_fc
         | 
| 148 | 
            +
                    config.fused_mlp = self.base_config.fused_mlp
         | 
| 149 | 
            +
                    config.fused_dropout_add_ln = self.base_config.fused_dropout_add_ln
         | 
| 150 | 
            +
                    config.residual_in_fp32 = self.base_config.residual_in_fp32
         | 
| 151 | 
            +
                    GPTLMHeadModel.__init__(self, config)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                # TODO: here we ignore attention_mask to make it compatible with HF trainer. The MHA in flash-attention should
         | 
| 154 | 
            +
                #  be reimplement and integrate attention_mask like here:
         | 
| 155 | 
            +
                #  https://github.com/huggingface/transformers/blob/0864dd3beb238b7bec3528a3d1d6c17a28f51a51/src/transformers/models/llama/modeling_llama.py#L536
         | 
| 156 | 
            +
                def forward(self, input_ids, attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 157 | 
            +
                            labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None,
         | 
| 158 | 
            +
                            position_ids=None, inference_params=None, num_last_tokens=0, **loss_kwargs):
         | 
| 159 | 
            +
                    """
         | 
| 160 | 
            +
                            input_ids: (batch, seqlen) int tensor
         | 
| 161 | 
            +
                            inference_params: for generation. Adapted from Megatron-LM (and Apex)
         | 
| 162 | 
            +
                            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
         | 
| 163 | 
            +
                            num_last_tokens: if > 0, only return the logits for the last n tokens
         | 
| 164 | 
            +
                            """
         | 
| 165 | 
            +
                    assert (
         | 
| 166 | 
            +
                            input_ids.ndim == 2
         | 
| 167 | 
            +
                    ), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
         | 
| 168 | 
            +
                    b, slen = input_ids.shape
         | 
| 169 | 
            +
                    hidden_states = self.transformer(
         | 
| 170 | 
            +
                        input_ids, position_ids=position_ids, inference_params=inference_params
         | 
| 171 | 
            +
                    )
         | 
| 172 | 
            +
                    if inference_params is not None:
         | 
| 173 | 
            +
                        assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
         | 
| 174 | 
            +
                    if num_last_tokens > 0:
         | 
| 175 | 
            +
                        hidden_states = hidden_states[:, -num_last_tokens:]
         | 
| 176 | 
            +
                    if self.project_out is not None:
         | 
| 177 | 
            +
                        hidden_states = self.project_out(hidden_states)
         | 
| 178 | 
            +
                    if self.output_scale != 1.0:
         | 
| 179 | 
            +
                        hidden_states = hidden_states * self.output_scale
         | 
| 180 | 
            +
                    if not self.norm_head:
         | 
| 181 | 
            +
                        lm_logits = self.lm_head(hidden_states)
         | 
| 182 | 
            +
                    else:
         | 
| 183 | 
            +
                        lm_head_weight = F.normalize(self.lm_head.weight)
         | 
| 184 | 
            +
                        # if isinstance(self.lm_head, ColumnParallelLinear) and self.lm_head.sequence_parallel:
         | 
| 185 | 
            +
                        #     hidden_states = all_gather(hidden_states, self.lm_head.process_group)
         | 
| 186 | 
            +
                        lm_logits = F.linear(hidden_states, lm_head_weight, bias=self.lm_head.bias)
         | 
| 187 | 
            +
                    # During inference, we want the full logit for sampling
         | 
| 188 | 
            +
                    # if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
         | 
| 189 | 
            +
                    #     lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
         | 
| 190 | 
            +
                    #     lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    loss = None
         | 
| 193 | 
            +
                    if labels is not None:
         | 
| 194 | 
            +
                        loss = self.loss_function(logits=lm_logits, labels=labels, vocab_size=self.base_config.vocab_size,
         | 
| 195 | 
            +
                                                  **loss_kwargs)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    return CausalLMOutput(
         | 
| 198 | 
            +
                        loss=loss,
         | 
| 199 | 
            +
                        logits=lm_logits,
         | 
| 200 | 
            +
                        hidden_states=hidden_states
         | 
| 201 | 
            +
                    )
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                @property
         | 
| 204 | 
            +
                def loss_function(self):
         | 
| 205 | 
            +
                    if getattr(self.base_config, "loss_type", None) is not None:
         | 
| 206 | 
            +
                        loss_type = self.base_config.loss_type
         | 
| 207 | 
            +
                    else:
         | 
| 208 | 
            +
                        loss_type = self.__class__.__name__
         | 
| 209 | 
            +
                        if loss_type not in LOSS_MAPPING:
         | 
| 210 | 
            +
                            loss_groups = f"({'|'.join(LOSS_MAPPING)})"
         | 
| 211 | 
            +
                            loss_type = re.findall(loss_groups, self.__class__.__name__)
         | 
| 212 | 
            +
                            if len(loss_type) > 0:
         | 
| 213 | 
            +
                                loss_type = loss_type[0]
         | 
| 214 | 
            +
                            else:
         | 
| 215 | 
            +
                                loss_type = None
         | 
| 216 | 
            +
                    if loss_type is None or loss_type not in LOSS_MAPPING and getattr(self.base_config, "loss_type",
         | 
| 217 | 
            +
                                                                                      None) is not None:
         | 
| 218 | 
            +
                        print(
         | 
| 219 | 
            +
                            f"`loss_type={loss_type}` was set in the base_config but it is unrecognised."
         | 
| 220 | 
            +
                            f"Using the default loss: `ForCausalLMLoss`."
         | 
| 221 | 
            +
                        )
         | 
| 222 | 
            +
                        loss_type = "ForCausalLM"
         | 
| 223 | 
            +
                    return LOSS_MAPPING[loss_type]
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def save_pretrained(
         | 
| 226 | 
            +
                        self,
         | 
| 227 | 
            +
                        save_directory: Union[str, os.PathLike],
         | 
| 228 | 
            +
                        is_main_process: bool = True,
         | 
| 229 | 
            +
                        state_dict: Optional[dict] = None,
         | 
| 230 | 
            +
                        safe_serialization: bool = False,
         | 
| 231 | 
            +
                        **kwargs,
         | 
| 232 | 
            +
                ):
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    if safe_serialization:
         | 
| 235 | 
            +
                        raise ImportError("`safe_serialization` is not implemented yet`.")
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    if os.path.isfile(save_directory):
         | 
| 238 | 
            +
                        logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
         | 
| 239 | 
            +
                        return
         | 
| 240 | 
            +
                    os.makedirs(save_directory, exist_ok=True)
         | 
| 241 | 
            +
                    # Save the config
         | 
| 242 | 
            +
                    if is_main_process:
         | 
| 243 | 
            +
                        self.base_config.save_pretrained(save_directory)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    # Save the model
         | 
| 246 | 
            +
                    if state_dict is None:
         | 
| 247 | 
            +
                        # Only save the model itself if we are using distributed training
         | 
| 248 | 
            +
                        model_to_save = unwrap_model(self)
         | 
| 249 | 
            +
                        state_dict = model_to_save.state_dict()
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
         | 
| 252 | 
            +
                    torch.save(state_dict, os.path.join(save_directory, weights_name))
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    # find the file where NovoMolGen is defined
         | 
| 255 | 
            +
                    src = inspect.getsourcefile(type(self))
         | 
| 256 | 
            +
                    if src:
         | 
| 257 | 
            +
                        dst = os.path.join(save_directory, os.path.basename(src))
         | 
| 258 | 
            +
                        shutil.copy(src, dst)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                @classmethod
         | 
| 261 | 
            +
                def from_pretrained(
         | 
| 262 | 
            +
                    cls, 
         | 
| 263 | 
            +
                    pretrained_model_name_or_path, 
         | 
| 264 | 
            +
                    checkpoint_path: str = "",
         | 
| 265 | 
            +
                    config: Optional[Union[NovoMolGenConfig, str, os.PathLike]] = None,
         | 
| 266 | 
            +
                    **kwargs,
         | 
| 267 | 
            +
                    ):
         | 
| 268 | 
            +
                    if config is None:
         | 
| 269 | 
            +
                        config = NovoMolGenConfig.from_pretrained(pretrained_model_name_or_path, checkpoint_path=checkpoint_path)
         | 
| 270 | 
            +
                    model = cls(config)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    if os.path.exists(pretrained_model_name_or_path):
         | 
| 273 | 
            +
                        state_dict = torch.load(os.path.join(pretrained_model_name_or_path, checkpoint_path, WEIGHTS_NAME))
         | 
| 274 | 
            +
                    else:
         | 
| 275 | 
            +
                        state_dict = state_dict_from_pretrained(pretrained_model_name_or_path, checkpoint_path=checkpoint_path)
         | 
| 276 | 
            +
                    model.load_state_dict(state_dict)
         | 
| 277 | 
            +
                    return model
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                def sample(
         | 
| 280 | 
            +
                        self,
         | 
| 281 | 
            +
                        tokenizer,
         | 
| 282 | 
            +
                        batch_size: int = 4,
         | 
| 283 | 
            +
                        max_length: int = 64,
         | 
| 284 | 
            +
                        temperature: float = 1.0,
         | 
| 285 | 
            +
                        top_k: int = 50,
         | 
| 286 | 
            +
                        top_p: float = 0.95,
         | 
| 287 | 
            +
                        device: torch.device = torch.device("cuda"),
         | 
| 288 | 
            +
                ):
         | 
| 289 | 
            +
                    """
         | 
| 290 | 
            +
                    Generate a batch of sequences from the model.
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                    Returns a dictionary with up to three keys:
         | 
| 293 | 
            +
                    {
         | 
| 294 | 
            +
                        "<mol_type>": <list of raw sequences in that moltype>,
         | 
| 295 | 
            +
                        "sequences": <torch.LongTensor of valid token IDs>
         | 
| 296 | 
            +
                    }
         | 
| 297 | 
            +
                    """
         | 
| 298 | 
            +
                    input_ids = tokenizer.encode("", return_tensors="pt").to(device)
         | 
| 299 | 
            +
                    # Repeat the prompt for the desired batch size
         | 
| 300 | 
            +
                    input_ids = input_ids.repeat_interleave(batch_size, dim=0)
         | 
| 301 | 
            +
                    # If the tokenizer includes an EOS token for an empty prompt, we remove it.
         | 
| 302 | 
            +
                    if input_ids.shape[1] > 1:
         | 
| 303 | 
            +
                        input_ids = input_ids[:, :-1]
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    generation_output = self.generate(
         | 
| 306 | 
            +
                        input_ids,
         | 
| 307 | 
            +
                        max_length=max_length,
         | 
| 308 | 
            +
                        temperature=temperature,
         | 
| 309 | 
            +
                        top_k=top_k,
         | 
| 310 | 
            +
                        top_p=top_p,
         | 
| 311 | 
            +
                        eos_token_id=tokenizer.eos_token_id,
         | 
| 312 | 
            +
                        return_dict_in_generate=True,
         | 
| 313 | 
            +
                    )
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    sequences = self._filter_tokens_after_eos(
         | 
| 316 | 
            +
                        generation_output.sequences, eos_id=tokenizer.eos_token_id
         | 
| 317 | 
            +
                    )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    decoded_strings = tokenizer.batch_decode(sequences, skip_special_tokens=True)
         | 
| 320 | 
            +
                    decoded_strings = [s.replace(" ", "") for s in decoded_strings]
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    result = {
         | 
| 323 | 
            +
                        self.mol_type: decoded_strings,
         | 
| 324 | 
            +
                        "sequences": sequences,
         | 
| 325 | 
            +
                    }
         | 
| 326 | 
            +
                    return result
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                @staticmethod
         | 
| 329 | 
            +
                def _filter_tokens_after_eos(sequences, eos_id):
         | 
| 330 | 
            +
                    output = copy.deepcopy(sequences)
         | 
| 331 | 
            +
                    for i in range(sequences.size(0)):
         | 
| 332 | 
            +
                        row = sequences[i]
         | 
| 333 | 
            +
                        eos_position = (row == eos_id).nonzero()
         | 
| 334 | 
            +
                        if eos_position.numel() > 0:
         | 
| 335 | 
            +
                            eos_position = eos_position[0, 0].item()  # Get the index of the first occurrence
         | 
| 336 | 
            +
                            output[i, eos_position + 1:] = eos_id
         | 
| 337 | 
            +
                    return output
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs):
         | 
| 340 | 
            +
                    # HF’s GenerationMixin would normally do more, but for a basic LM this usually suffices:
         | 
| 341 | 
            +
                    return {"input_ids": input_ids, "attention_mask": attention_mask}
         | 
    	
        pytorch_model.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4b3dd6fa6d9eca1c78c4c920e21024e2ed1bad9e49c73a8fb546bff7b856736a
         | 
| 3 | 
            +
            size 629775126
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<bos>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "<eos>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "<pad>",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "unk_token": {
         | 
| 24 | 
            +
                "content": "<unk>",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              }
         | 
| 30 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,203 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "version": "1.0",
         | 
| 3 | 
            +
              "truncation": null,
         | 
| 4 | 
            +
              "padding": null,
         | 
| 5 | 
            +
              "added_tokens": [
         | 
| 6 | 
            +
                {
         | 
| 7 | 
            +
                  "id": 0,
         | 
| 8 | 
            +
                  "content": "<unk>",
         | 
| 9 | 
            +
                  "single_word": false,
         | 
| 10 | 
            +
                  "lstrip": false,
         | 
| 11 | 
            +
                  "rstrip": false,
         | 
| 12 | 
            +
                  "normalized": false,
         | 
| 13 | 
            +
                  "special": true
         | 
| 14 | 
            +
                },
         | 
| 15 | 
            +
                {
         | 
| 16 | 
            +
                  "id": 1,
         | 
| 17 | 
            +
                  "content": "<pad>",
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "lstrip": false,
         | 
| 20 | 
            +
                  "rstrip": false,
         | 
| 21 | 
            +
                  "normalized": false,
         | 
| 22 | 
            +
                  "special": true
         | 
| 23 | 
            +
                },
         | 
| 24 | 
            +
                {
         | 
| 25 | 
            +
                  "id": 2,
         | 
| 26 | 
            +
                  "content": "<bos>",
         | 
| 27 | 
            +
                  "single_word": false,
         | 
| 28 | 
            +
                  "lstrip": false,
         | 
| 29 | 
            +
                  "rstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "special": true
         | 
| 32 | 
            +
                },
         | 
| 33 | 
            +
                {
         | 
| 34 | 
            +
                  "id": 3,
         | 
| 35 | 
            +
                  "content": "<eos>",
         | 
| 36 | 
            +
                  "single_word": false,
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "rstrip": false,
         | 
| 39 | 
            +
                  "normalized": false,
         | 
| 40 | 
            +
                  "special": true
         | 
| 41 | 
            +
                }
         | 
| 42 | 
            +
              ],
         | 
| 43 | 
            +
              "normalizer": null,
         | 
| 44 | 
            +
              "pre_tokenizer": {
         | 
| 45 | 
            +
                "type": "Split",
         | 
| 46 | 
            +
                "pattern": {
         | 
| 47 | 
            +
                  "Regex": "(\\[[^\\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\\(|\\)|\\.|=|#|-|\\+|\\\\\\\\|\\/|:|~|@|\\?|>>?|\\*|\\$|\\%[0-9]{2}|[0-9])"
         | 
| 48 | 
            +
                },
         | 
| 49 | 
            +
                "behavior": "Isolated",
         | 
| 50 | 
            +
                "invert": false
         | 
| 51 | 
            +
              },
         | 
| 52 | 
            +
              "post_processor": {
         | 
| 53 | 
            +
                "type": "TemplateProcessing",
         | 
| 54 | 
            +
                "single": [
         | 
| 55 | 
            +
                  {
         | 
| 56 | 
            +
                    "SpecialToken": {
         | 
| 57 | 
            +
                      "id": "<bos>",
         | 
| 58 | 
            +
                      "type_id": 0
         | 
| 59 | 
            +
                    }
         | 
| 60 | 
            +
                  },
         | 
| 61 | 
            +
                  {
         | 
| 62 | 
            +
                    "Sequence": {
         | 
| 63 | 
            +
                      "id": "A",
         | 
| 64 | 
            +
                      "type_id": 0
         | 
| 65 | 
            +
                    }
         | 
| 66 | 
            +
                  },
         | 
| 67 | 
            +
                  {
         | 
| 68 | 
            +
                    "SpecialToken": {
         | 
| 69 | 
            +
                      "id": "<eos>",
         | 
| 70 | 
            +
                      "type_id": 0
         | 
| 71 | 
            +
                    }
         | 
| 72 | 
            +
                  }
         | 
| 73 | 
            +
                ],
         | 
| 74 | 
            +
                "pair": [
         | 
| 75 | 
            +
                  {
         | 
| 76 | 
            +
                    "Sequence": {
         | 
| 77 | 
            +
                      "id": "A",
         | 
| 78 | 
            +
                      "type_id": 0
         | 
| 79 | 
            +
                    }
         | 
| 80 | 
            +
                  },
         | 
| 81 | 
            +
                  {
         | 
| 82 | 
            +
                    "Sequence": {
         | 
| 83 | 
            +
                      "id": "B",
         | 
| 84 | 
            +
                      "type_id": 1
         | 
| 85 | 
            +
                    }
         | 
| 86 | 
            +
                  }
         | 
| 87 | 
            +
                ],
         | 
| 88 | 
            +
                "special_tokens": {
         | 
| 89 | 
            +
                  "<bos>": {
         | 
| 90 | 
            +
                    "id": "<bos>",
         | 
| 91 | 
            +
                    "ids": [
         | 
| 92 | 
            +
                      2
         | 
| 93 | 
            +
                    ],
         | 
| 94 | 
            +
                    "tokens": [
         | 
| 95 | 
            +
                      "<bos>"
         | 
| 96 | 
            +
                    ]
         | 
| 97 | 
            +
                  },
         | 
| 98 | 
            +
                  "<eos>": {
         | 
| 99 | 
            +
                    "id": "<eos>",
         | 
| 100 | 
            +
                    "ids": [
         | 
| 101 | 
            +
                      3
         | 
| 102 | 
            +
                    ],
         | 
| 103 | 
            +
                    "tokens": [
         | 
| 104 | 
            +
                      "<eos>"
         | 
| 105 | 
            +
                    ]
         | 
| 106 | 
            +
                  }
         | 
| 107 | 
            +
                }
         | 
| 108 | 
            +
              },
         | 
| 109 | 
            +
              "decoder": {
         | 
| 110 | 
            +
                "type": "BPEDecoder",
         | 
| 111 | 
            +
                "suffix": "</w>"
         | 
| 112 | 
            +
              },
         | 
| 113 | 
            +
              "model": {
         | 
| 114 | 
            +
                "type": "WordLevel",
         | 
| 115 | 
            +
                "vocab": {
         | 
| 116 | 
            +
                  "<unk>": 0,
         | 
| 117 | 
            +
                  "<pad>": 1,
         | 
| 118 | 
            +
                  "<bos>": 2,
         | 
| 119 | 
            +
                  "<eos>": 3,
         | 
| 120 | 
            +
                  "C": 4,
         | 
| 121 | 
            +
                  "(": 5,
         | 
| 122 | 
            +
                  ")": 6,
         | 
| 123 | 
            +
                  "c": 7,
         | 
| 124 | 
            +
                  "1": 8,
         | 
| 125 | 
            +
                  "O": 9,
         | 
| 126 | 
            +
                  "=": 10,
         | 
| 127 | 
            +
                  "N": 11,
         | 
| 128 | 
            +
                  "2": 12,
         | 
| 129 | 
            +
                  "n": 13,
         | 
| 130 | 
            +
                  "[C@H]": 14,
         | 
| 131 | 
            +
                  "[C@@H]": 15,
         | 
| 132 | 
            +
                  "3": 16,
         | 
| 133 | 
            +
                  "F": 17,
         | 
| 134 | 
            +
                  "S": 18,
         | 
| 135 | 
            +
                  "s": 19,
         | 
| 136 | 
            +
                  "4": 20,
         | 
| 137 | 
            +
                  "Cl": 21,
         | 
| 138 | 
            +
                  "[nH]": 22,
         | 
| 139 | 
            +
                  "o": 23,
         | 
| 140 | 
            +
                  "[C@]": 24,
         | 
| 141 | 
            +
                  "[C@@]": 25,
         | 
| 142 | 
            +
                  "#": 26,
         | 
| 143 | 
            +
                  "Br": 27,
         | 
| 144 | 
            +
                  "-": 28,
         | 
| 145 | 
            +
                  "/": 29,
         | 
| 146 | 
            +
                  "[N+]": 30,
         | 
| 147 | 
            +
                  "[O-]": 31,
         | 
| 148 | 
            +
                  "5": 32,
         | 
| 149 | 
            +
                  "I": 33,
         | 
| 150 | 
            +
                  "[N-]": 34,
         | 
| 151 | 
            +
                  "P": 35,
         | 
| 152 | 
            +
                  "[S@]": 36,
         | 
| 153 | 
            +
                  "[S@@]": 37,
         | 
| 154 | 
            +
                  "[n+]": 38,
         | 
| 155 | 
            +
                  "[Si]": 39,
         | 
| 156 | 
            +
                  "6": 40,
         | 
| 157 | 
            +
                  "[S+]": 41,
         | 
| 158 | 
            +
                  "B": 42,
         | 
| 159 | 
            +
                  "[P@]": 43,
         | 
| 160 | 
            +
                  "7": 44,
         | 
| 161 | 
            +
                  "[P@@]": 45,
         | 
| 162 | 
            +
                  "[N@]": 46,
         | 
| 163 | 
            +
                  "8": 47,
         | 
| 164 | 
            +
                  "[N@@]": 48,
         | 
| 165 | 
            +
                  "[B-]": 49,
         | 
| 166 | 
            +
                  "[NH+]": 50,
         | 
| 167 | 
            +
                  "[N@@H+]": 51,
         | 
| 168 | 
            +
                  "[NH2+]": 52,
         | 
| 169 | 
            +
                  "[N@H+]": 53,
         | 
| 170 | 
            +
                  "[O]": 54,
         | 
| 171 | 
            +
                  "[NH3+]": 55,
         | 
| 172 | 
            +
                  "[PH]": 56,
         | 
| 173 | 
            +
                  "[Si@]": 57,
         | 
| 174 | 
            +
                  "[Si@@]": 58,
         | 
| 175 | 
            +
                  "[n-]": 59,
         | 
| 176 | 
            +
                  "9": 60,
         | 
| 177 | 
            +
                  "[N@+]": 61,
         | 
| 178 | 
            +
                  "[nH+]": 62,
         | 
| 179 | 
            +
                  "[N@@+]": 63,
         | 
| 180 | 
            +
                  "[Sn]": 64,
         | 
| 181 | 
            +
                  "[s+]": 65,
         | 
| 182 | 
            +
                  "[Se]": 66,
         | 
| 183 | 
            +
                  ".": 67,
         | 
| 184 | 
            +
                  "[Cl-]": 68,
         | 
| 185 | 
            +
                  "[N]": 69,
         | 
| 186 | 
            +
                  "[C-]": 70,
         | 
| 187 | 
            +
                  "[C]": 71,
         | 
| 188 | 
            +
                  "[S@@+]": 72,
         | 
| 189 | 
            +
                  "%10": 73,
         | 
| 190 | 
            +
                  "%11": 74,
         | 
| 191 | 
            +
                  "[O+]": 75,
         | 
| 192 | 
            +
                  "[SH]": 76,
         | 
| 193 | 
            +
                  "[Si@H]": 77,
         | 
| 194 | 
            +
                  "[NH]": 78,
         | 
| 195 | 
            +
                  "[P+]": 79,
         | 
| 196 | 
            +
                  "[P@@H]": 80,
         | 
| 197 | 
            +
                  "[Si@@H]": 81,
         | 
| 198 | 
            +
                  "[c-]": 82,
         | 
| 199 | 
            +
                  "[o+]": 83
         | 
| 200 | 
            +
                },
         | 
| 201 | 
            +
                "unk_token": "<unk>"
         | 
| 202 | 
            +
              }
         | 
| 203 | 
            +
            }
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,43 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<unk>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<pad>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "<bos>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "3": {
         | 
| 28 | 
            +
                  "content": "<eos>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                }
         | 
| 35 | 
            +
              },
         | 
| 36 | 
            +
              "bos_token": "<bos>",
         | 
| 37 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 38 | 
            +
              "eos_token": "<eos>",
         | 
| 39 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 40 | 
            +
              "pad_token": "<pad>",
         | 
| 41 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast",
         | 
| 42 | 
            +
              "unk_token": "<unk>"
         | 
| 43 | 
            +
            }
         | 

