--- language: - en - zh library_name: diffusers license: apache-2.0 pipeline_tag: image-to-image --- # Edit-R1-Qwen-Image-Edit-2509: A model from UniWorld-V2 This model is a checkpoint (`Edit-R1-Qwen-Image-Edit-2509`) developed using the **Edit-R1** framework, as presented in the paper [Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback](https://huggingface.co/papers/2510.16888). The **Edit-R1** framework focuses on reinforcing instruction-based image editing through Diffusion Negative-aware Finetuning (DiffusionNFT) and MLLM Implicit Feedback.
# Performance |Benchmark| Qwen-Image-Edit-2509 | **Edit-R1-Qwen-Image-Edit-2509** | | ---- | ---- | ----| | GEdit-Bench | 7.54 | **7.76** | | ImgEdit | 4.35 | **4.48** | # Usage ```python import os import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16) print("pipeline loaded") pipeline.load_lora_weights( "chestnutlzj/Edit-R1-Qwen-Image-Edit-2509", adapter_name="lora", ) pipeline.set_adapters(["lora"], adapter_weights=[1]) pipeline.to('cuda') pipeline.set_progress_bar_config(disable=None) image1 = Image.open("input1.png") image2 = Image.open("input2.png") prompt = "The magician bear is on the left, the alchemist bear is on the right, facing each other in the central park square." inputs = { "image": [image1, image2], "prompt": prompt, "generator": torch.manual_seed(0), "true_cfg_scale": 4.0, "negative_prompt": " ", "num_inference_steps": 40, "guidance_scale": 1.0, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save("output_image_edit_plus.png") print("image saved at", os.path.abspath("output_image_edit_plus.png")) ```