--- license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: educative_2 results: [] --- # educative_2 This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2865 - Precision: 0.4651 - Recall: 0.4460 - F1: 0.4553 - Accuracy: 0.9123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 56 | 0.3455 | 0.5812 | 0.1166 | 0.1943 | 0.8853 | | No log | 2.0 | 112 | 0.2931 | 0.4833 | 0.4460 | 0.4639 | 0.9123 | | No log | 3.0 | 168 | 0.2865 | 0.4651 | 0.4460 | 0.4553 | 0.9123 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2