File size: 7,093 Bytes
ec6f0ba 96d3e32 ec6f0ba 61ab781 76bf940 ec6f0ba 96d3e32 960b923 f634250 960b923 e7c1709 f634250 96d3e32 f634250 e7c1709 9a41cc1 e7c1709 84bd152 e7c1709 84bd152 960b923 e7c1709 96d3e32 f634250 ec6f0ba e7c1709 ec6f0ba e7c1709 ec6f0ba e7c1709 96d3e32 ec6f0ba 960b923 ec6f0ba e7c1709 96d3e32 e7c1709 96d3e32 ec6f0ba e7c1709 96d3e32 84bd152 e6ddd0b e7c1709 ec6f0ba e7c1709 ec6f0ba e7c1709 ec6f0ba e7c1709 ec6f0ba e7c1709 ec6f0ba e7c1709 ec6f0ba e6ddd0b e7c1709 4c68ad8 e7c1709 9a41cc1 e7c1709 604d6b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: apache-2.0
language:
- en
base_model:
- cisco-ai/SecureBERT2.0-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
tags:
- IR
- reranking
- securebert
- docembedding
---
# Model Card for cisco-ai/SecureBERT2.0-cross-encoder
The **SecureBERT 2.0 Cross-Encoder** is a cybersecurity domain-specific model fine-tuned from [SecureBERT 2.0](https://huggingface.co/cisco-ai/SecureBERT2.0-base).
It computes **pairwise similarity scores** between two texts, enabling use in **text reranking, semantic search, and cybersecurity intelligence retrieval** tasks.
---
## Model Details
### Model Description
- **Developed by:** Cisco AI
- **Model type:** Cross Encoder (Sentence Similarity)
- **Architecture:** ModernBERT (fine-tuned via Sentence Transformers)
- **Max Sequence Length:** 1024 tokens
- **Output Labels:** 1 (similarity score)
- **Language:** English
- **License:** Apache-2.0
- **Finetuned from model:** [cisco-ai/SecureBERT2.0-base](https://huggingface.co/cisco-ai/SecureBERT2.0-base)
## Uses
### Direct Use
- Semantic text similarity in cybersecurity contexts
- Text and code reranking for information retrieval (IR)
- Threat intelligence question–answer relevance scoring
- Cybersecurity report and log correlation
### Downstream Use
Can be integrated into:
- Cyber threat intelligence search engines
- SOC automation pipelines
- Cybersecurity knowledge graph enrichment
- Threat hunting and incident response systems
### Out-of-Scope Use
- Generic text similarity outside the cybersecurity domain
- Tasks requiring generative reasoning or open-domain question answering
---
## Bias, Risks, and Limitations
The model reflects the distribution of cybersecurity-related data used during fine-tuning.
Potential risks include:
- Overrepresentation of specific malware, technologies, or threat actors
- Bias toward technical English sources
- Reduced performance on non-English or mixed technical/natural text
### Recommendations
Users should evaluate results for domain alignment and combine with other retrieval models or heuristic filters when applied to non-cybersecurity contexts.
---
## How to Get Started with the Model
### Using the Sentence Transformers API
#### Install dependencies
```bash
pip install -U sentence-transformers
```
### Run Inference
```python
from sentence_transformers import CrossEncoder
# Load the model
model = CrossEncoder("cisco-ai/SecureBERT2.0-cross-encoder")
# Example pairs
pairs = [
["How does Stealc malware extract browser data?",
"Stealc uses Sqlite3 DLL to query browser databases and retrieve cookies, passwords, and history."],
["Best practices for post-acquisition cybersecurity integration?",
"Conduct security assessment, align policies, integrate security technologies, and train employees."],
]
# Compute similarity scores
scores = model.predict(pairs)
print(scores)
```
### Rank Candidate Responses
```python
query = "How to prevent Kerberoasting attacks?"
candidates = [
"Implement MFA and privileged access management",
"Monitor Kerberos tickets for anomalous activity",
"Apply zero-trust network segmentation",
]
ranking = model.rank(query, candidates)
print(ranking)
```
## Framework Versions
* python: 3.10.10
* sentence_transformers: 5.0.0
* transformers: 4.52.4
* PyTorch: 2.7.0+cu128
* accelerate: 1.9.0
* datasets: 3.6.0
---
## Training Details
### Training Dataset
The model was fine-tuned on a **cybersecurity sentence-pair similarity dataset** for cross-encoder training.
- **Dataset Size:** 35,705 samples
- **Columns:** `sentence1`, `sentence2`, `label`
#### Average Lengths (first 1000 samples)
| Field | Mean Length |
|:------|:-------------:|
| Sentence1 | 98.46 |
| Sentence2 | 1468.34 |
| Label | 1.0 |
#### Example Schema
| Field | Type | Description |
|:------|:------|:------------|
| sentence1 | string | Query or document text |
| sentence2 | string | Paired document or candidate response |
| label | float | Similarity score between the two inputs |
---
### Training Objective and Loss
The model was trained using a **contrastive ranking objective** to learn high-quality similarity scores between cybersecurity-related text pairs.
- **Loss Function:** [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss)
#### Loss Parameters
```json
{
"scale": 10.0,
"num_negatives": 10,
"activation_fn": "torch.nn.modules.activation.Sigmoid",
"mini_batch_size": 24
}
```
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
The evaluation was performed on a **held-out test set** of cybersecurity-related question–answer pairs and document retrieval tasks.
Data includes:
- Threat intelligence descriptions and related advisories
- Exploit procedure and mitigation text pairs
- Cybersecurity Q&A and incident analysis examples
#### Factors
Evaluation considered multiple aspects of similarity and relevance:
- **Domain diversity:** different cybersecurity subfields (malware, vulnerabilities, network defense)
- **Task diversity:** retrieval, reranking, and relevance scoring
- **Pair length:** from short queries to long technical documents
#### Metrics
The model was evaluated using standard information retrieval metrics:
- **Mean Average Precision (mAP):** measures ranking precision across all retrieved results
- **Recall@1 (R@1):** measures the proportion of correct top-1 matches
- **Normalized Discounted Cumulative Gain (NDCG@10):** evaluates ranking quality up to the 10th result
- **Mean Reciprocal Rank (MRR@10):** assesses the average rank position of the first correct answer
### Results
| Model | mAP | R@1 | NDCG@10 | MRR@10 |
|:------|:----:|:---:|:--------:|:--------:|
| **ms-marco-TinyBERT-L2** | 0.920 | 0.849 | 0.964 | 0.955 |
| **SecureBERT 2.0 Cross-Encoder** | **0.955** | **0.948** | **0.986** | **0.983** |
#### Summary
The **SecureBERT 2.0 Cross-Encoder** achieves **state-of-the-art retrieval and ranking performance** on cybersecurity text similarity tasks.
Compared to the general-purpose `ms-marco-TinyBERT-L2` baseline:
- It improves **mAP** by +0.035
- Achieves nearly perfect **R@1** and **MRR@10**, indicating highly accurate top-1 retrieval
- Shows the strongest **NDCG@10**, reflecting excellent ranking quality across top results
These results confirm that **domain-specific pretraining and fine-tuning** substantially enhance semantic understanding and information retrieval capabilities in cybersecurity applications.
---
# Cite:
Bibtex
```
@article{aghaei2025securebert,
title={SecureBERT 2.0: Advanced Language Model for Cybersecurity Intelligence},
author={Aghaei, Ehsan and Jain, Sarthak and Arun, Prashanth and Sambamoorthy, Arjun},
journal={arXiv preprint arXiv:2510.00240},
year={2025}
}
```
## Model Card Authors
Cisco AI
## Model Card Contact
For inquiries, please contact [[email protected]](mailto:[email protected]) |