cloud commited on
Commit
e11471f
·
1 Parent(s): 9566351

Upload all project files and fine-tuned model

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +274 -0
  2. ext_weights/synchformer_state_dict.pth +3 -0
  3. ext_weights/v1-44.pth +3 -0
  4. mmaudio/__init__.py +0 -0
  5. mmaudio/__pycache__/__init__.cpython-310.pyc +0 -0
  6. mmaudio/__pycache__/eval_utils.cpython-310.pyc +0 -0
  7. mmaudio/data/__init__.py +0 -0
  8. mmaudio/data/__pycache__/__init__.cpython-310.pyc +0 -0
  9. mmaudio/data/__pycache__/av_utils.cpython-310.pyc +0 -0
  10. mmaudio/data/av_utils.py +162 -0
  11. mmaudio/data/data_setup.py +174 -0
  12. mmaudio/data/eval/__init__.py +0 -0
  13. mmaudio/data/eval/audiocaps.py +39 -0
  14. mmaudio/data/eval/moviegen.py +131 -0
  15. mmaudio/data/eval/video_dataset.py +197 -0
  16. mmaudio/data/extracted_audio.py +88 -0
  17. mmaudio/data/extracted_vgg.py +101 -0
  18. mmaudio/data/extraction/__init__.py +0 -0
  19. mmaudio/data/extraction/vgg_sound.py +193 -0
  20. mmaudio/data/extraction/wav_dataset.py +132 -0
  21. mmaudio/data/mm_dataset.py +45 -0
  22. mmaudio/data/utils.py +148 -0
  23. mmaudio/eval_utils.py +255 -0
  24. mmaudio/ext/__init__.py +1 -0
  25. mmaudio/ext/__pycache__/__init__.cpython-310.pyc +0 -0
  26. mmaudio/ext/__pycache__/mel_converter.cpython-310.pyc +0 -0
  27. mmaudio/ext/__pycache__/rotary_embeddings.cpython-310.pyc +0 -0
  28. mmaudio/ext/autoencoder/__init__.py +1 -0
  29. mmaudio/ext/autoencoder/__pycache__/__init__.cpython-310.pyc +0 -0
  30. mmaudio/ext/autoencoder/__pycache__/autoencoder.cpython-310.pyc +0 -0
  31. mmaudio/ext/autoencoder/__pycache__/edm2_utils.cpython-310.pyc +0 -0
  32. mmaudio/ext/autoencoder/__pycache__/vae.cpython-310.pyc +0 -0
  33. mmaudio/ext/autoencoder/__pycache__/vae_modules.cpython-310.pyc +0 -0
  34. mmaudio/ext/autoencoder/autoencoder.py +52 -0
  35. mmaudio/ext/autoencoder/edm2_utils.py +168 -0
  36. mmaudio/ext/autoencoder/vae.py +369 -0
  37. mmaudio/ext/autoencoder/vae_modules.py +117 -0
  38. mmaudio/ext/bigvgan/LICENSE +21 -0
  39. mmaudio/ext/bigvgan/__init__.py +1 -0
  40. mmaudio/ext/bigvgan/__pycache__/__init__.cpython-310.pyc +0 -0
  41. mmaudio/ext/bigvgan/__pycache__/activations.cpython-310.pyc +0 -0
  42. mmaudio/ext/bigvgan/__pycache__/bigvgan.cpython-310.pyc +0 -0
  43. mmaudio/ext/bigvgan/__pycache__/models.cpython-310.pyc +0 -0
  44. mmaudio/ext/bigvgan/__pycache__/utils.cpython-310.pyc +0 -0
  45. mmaudio/ext/bigvgan/activations.py +120 -0
  46. mmaudio/ext/bigvgan/alias_free_torch/__init__.py +6 -0
  47. mmaudio/ext/bigvgan/alias_free_torch/__pycache__/__init__.cpython-310.pyc +0 -0
  48. mmaudio/ext/bigvgan/alias_free_torch/__pycache__/act.cpython-310.pyc +0 -0
  49. mmaudio/ext/bigvgan/alias_free_torch/__pycache__/filter.cpython-310.pyc +0 -0
  50. mmaudio/ext/bigvgan/alias_free_torch/__pycache__/resample.cpython-310.pyc +0 -0
app.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ logging.getLogger("httpx").setLevel(logging.WARNING)
4
+ logging.getLogger("requests").setLevel(logging.WARNING)
5
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
6
+
7
+ import gc
8
+ from argparse import ArgumentParser
9
+ from datetime import datetime
10
+ from fractions import Fraction
11
+ from pathlib import Path
12
+
13
+ import gradio as gr
14
+ import torch
15
+ import torchaudio
16
+ import torch.hub
17
+
18
+ from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image,
19
+ load_video, make_video, setup_eval_logging)
20
+ from mmaudio.model.flow_matching import FlowMatching
21
+ from mmaudio.model.networks import MMAudio, get_my_mmaudio
22
+ from mmaudio.model.sequence_config import SequenceConfig
23
+ from mmaudio.model.utils.features_utils import FeaturesUtils
24
+
25
+ torch.backends.cuda.matmul.allow_tf32 = True
26
+ torch.backends.cudnn.allow_tf32 = True
27
+
28
+ log = logging.getLogger()
29
+
30
+ device = 'cpu'
31
+ if torch.cuda.is_available():
32
+ device = 'cuda'
33
+ elif torch.backends.mps.is_available():
34
+ device = 'mps'
35
+ else:
36
+ log.warning('CUDA/MPS are not available, running on CPU')
37
+ dtype = torch.float32
38
+
39
+ MY_CHECKPOINT_PATH = './nsfw_gold_8.5k_final.pth'
40
+ MY_MODEL_NAME = 'large_44k'
41
+
42
+ EXT_WEIGHTS_DIR = Path('./ext_weights')
43
+ EXT_WEIGHTS_DIR.mkdir(exist_ok=True)
44
+
45
+ VAE_URL = "https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth"
46
+ SYNCHFORMER_URL = "https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth"
47
+
48
+ def download_dependency(url: str, local_path: Path):
49
+ if not local_path.exists():
50
+ log.info(f"Downloading dependency from {url} to {local_path}...")
51
+ torch.hub.download_url_to_file(url, str(local_path), progress=True)
52
+ log.info(f"Download complete.")
53
+
54
+ log.info("Checking for dependencies (VAE and Synchformer)...")
55
+ VAE_PATH = EXT_WEIGHTS_DIR / 'v1-44.pth'
56
+ SYNCHFORMER_PATH = EXT_WEIGHTS_DIR / 'synchformer_state_dict.pth'
57
+
58
+ download_dependency(VAE_URL, VAE_PATH)
59
+ download_dependency(SYNCHFORMER_URL, SYNCHFORMER_PATH)
60
+
61
+ model_cfg_for_params: ModelConfig = all_model_cfg['large_44k_v2']
62
+
63
+ output_dir = Path('./output/gradio')
64
+ setup_eval_logging()
65
+
66
+
67
+ def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
68
+ seq_cfg = model_cfg_for_params.seq_cfg
69
+
70
+ net: MMAudio = get_my_mmaudio(MY_MODEL_NAME).to(device, dtype).eval()
71
+
72
+ log.info(f'Loading YOUR fine-tuned weights from {MY_CHECKPOINT_PATH}')
73
+ if not Path(MY_CHECKPOINT_PATH).exists():
74
+ raise FileNotFoundError(f"FATAL: Your model file was not found at {MY_CHECKPOINT_PATH}")
75
+ net.load_weights(torch.load(MY_CHECKPOINT_PATH, map_location=device, weights_only=True))
76
+ log.info(f'Successfully loaded your weights!')
77
+
78
+ feature_utils = FeaturesUtils(tod_vae_ckpt=VAE_PATH,
79
+ synchformer_ckpt=SYNCHFORMER_PATH,
80
+ enable_conditions=True,
81
+ mode=model_cfg_for_params.mode,
82
+ bigvgan_vocoder_ckpt=None,
83
+ need_vae_encoder=False)
84
+ feature_utils = feature_utils.to(device, dtype).eval()
85
+
86
+ return net, feature_utils, seq_cfg
87
+
88
+
89
+ net, feature_utils, seq_cfg = get_model()
90
+
91
+
92
+ @torch.inference_mode()
93
+ def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
94
+ cfg_strength: float, duration: float):
95
+
96
+ rng = torch.Generator(device=device)
97
+ if seed >= 0:
98
+ rng.manual_seed(seed)
99
+ else:
100
+ rng.seed()
101
+ fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
102
+
103
+ video_info = load_video(video, duration)
104
+ clip_frames = video_info.clip_frames
105
+ sync_frames = video_info.sync_frames
106
+ duration = video_info.duration_sec
107
+ clip_frames = clip_frames.unsqueeze(0)
108
+ sync_frames = sync_frames.unsqueeze(0)
109
+ seq_cfg.duration = duration
110
+ net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
111
+
112
+ audios = generate(clip_frames,
113
+ sync_frames, [prompt],
114
+ negative_text=[negative_prompt],
115
+ feature_utils=feature_utils,
116
+ net=net,
117
+ fm=fm,
118
+ rng=rng,
119
+ cfg_strength=cfg_strength)
120
+ audio = audios.float().cpu()[0]
121
+
122
+ current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
123
+ output_dir.mkdir(exist_ok=True, parents=True)
124
+ video_save_path = output_dir / f'{current_time_string}.mp4'
125
+ make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
126
+ gc.collect()
127
+ return video_save_path
128
+
129
+
130
+ @torch.inference_mode()
131
+ def image_to_audio(image: gr.Image, prompt: str, negative_prompt: str, seed: int, num_steps: int,
132
+ cfg_strength: float, duration: float):
133
+
134
+ rng = torch.Generator(device=device)
135
+ if seed >= 0:
136
+ rng.manual_seed(seed)
137
+ else:
138
+ rng.seed()
139
+ fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
140
+
141
+ image_info = load_image(image)
142
+ clip_frames = image_info.clip_frames
143
+ sync_frames = image_info.sync_frames
144
+ clip_frames = clip_frames.unsqueeze(0)
145
+ sync_frames = sync_frames.unsqueeze(0)
146
+ seq_cfg.duration = duration
147
+ net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
148
+
149
+ audios = generate(clip_frames,
150
+ sync_frames, [prompt],
151
+ negative_text=[negative_prompt],
152
+ feature_utils=feature_utils,
153
+ net=net,
154
+ fm=fm,
155
+ rng=rng,
156
+ cfg_strength=cfg_strength,
157
+ image_input=True)
158
+ audio = audios.float().cpu()[0]
159
+
160
+ current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
161
+ output_dir.mkdir(exist_ok=True, parents=True)
162
+ video_save_path = output_dir / f'{current_time_string}.mp4'
163
+ video_info = VideoInfo.from_image_info(image_info, duration, fps=Fraction(1))
164
+ make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
165
+ gc.collect()
166
+ return video_save_path
167
+
168
+
169
+ @torch.inference_mode()
170
+ def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
171
+ duration: float):
172
+
173
+ rng = torch.Generator(device=device)
174
+ if seed >= 0:
175
+ rng.manual_seed(seed)
176
+ else:
177
+ rng.seed()
178
+ fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
179
+
180
+ clip_frames = sync_frames = None
181
+ seq_cfg.duration = duration
182
+ net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
183
+
184
+ audios = generate(clip_frames,
185
+ sync_frames, [prompt],
186
+ negative_text=[negative_prompt],
187
+ feature_utils=feature_utils,
188
+ net=net,
189
+ fm=fm,
190
+ rng=rng,
191
+ cfg_strength=cfg_strength)
192
+ audio = audios.float().cpu()[0]
193
+
194
+ current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
195
+ output_dir.mkdir(exist_ok=True, parents=True)
196
+ audio_save_path = output_dir / f'{current_time_string}.flac'
197
+ torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
198
+ gc.collect()
199
+ return audio_save_path
200
+
201
+
202
+ video_to_audio_tab = gr.Interface(
203
+ fn=video_to_audio,
204
+ description="""
205
+ Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
206
+ Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a><br>
207
+ <br>
208
+ NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side). Doing so does not improve results.
209
+ """,
210
+ inputs=[
211
+ gr.Video(),
212
+ gr.Text(label='Prompt'),
213
+ gr.Text(label='Negative prompt', value='music'),
214
+ gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
215
+ gr.Number(label='Num steps', value=25, precision=0, minimum=1),
216
+ gr.Number(label='Guidance Strength', value=4.5, minimum=1),
217
+ gr.Number(label='Duration (sec)', value=8, minimum=1),
218
+ ],
219
+ outputs='playable_video',
220
+ cache_examples=False,
221
+ title='MMAudio — Video-to-Audio Synthesis',
222
+ )
223
+
224
+ text_to_audio_tab = gr.Interface(
225
+ fn=text_to_audio,
226
+ description="""
227
+ Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
228
+ Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a>
229
+ """,
230
+ inputs=[
231
+ gr.Text(label='Prompt'),
232
+ gr.Text(label='Negative prompt'),
233
+ gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
234
+ gr.Number(label='Num steps', value=25, precision=0, minimum=1),
235
+ gr.Number(label='Guidance Strength', value=4.5, minimum=1),
236
+ gr.Number(label='Duration (sec)', value=8, minimum=1),
237
+ ],
238
+ outputs='audio',
239
+ cache_examples=False,
240
+ title='MMAudio — Text-to-Audio Synthesis',
241
+ )
242
+
243
+ image_to_audio_tab = gr.Interface(
244
+ fn=image_to_audio,
245
+ description="""
246
+ Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
247
+ Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a><br>
248
+ <br>
249
+ NOTE: It takes longer to process high-resolution images (>384 px on the shorter side). Doing so does not improve results.
250
+ """,
251
+ inputs=[
252
+ gr.Image(type='filepath'),
253
+ gr.Text(label='Prompt'),
254
+ gr.Text(label='Negative prompt'),
255
+ gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
256
+ gr.Number(label='Num steps', value=25, precision=0, minimum=1),
257
+ gr.Number(label='Guidance Strength', value=4.5, minimum=1),
258
+ gr.Number(label='Duration (sec)', value=8, minimum=1),
259
+ ],
260
+ outputs='playable_video',
261
+ cache_examples=False,
262
+ title='MMAudio — Image-to-Audio Synthesis (experimental)',
263
+ )
264
+
265
+ if __name__ == "__main__":
266
+ parser = ArgumentParser()
267
+ parser.add_argument('--port', type=int, default=7860)
268
+ parser.add_argument('--share', action='store_true', help='Create a public link')
269
+ args = parser.parse_args()
270
+
271
+ app = gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab, image_to_audio_tab],
272
+ ['Video-to-Audio', 'Text-to-Audio', 'Image-to-Audio (experimental)'])
273
+
274
+ app.launch(server_name="0.0.0.0", server_port=args.port, share=args.share, allowed_paths=[output_dir])
ext_weights/synchformer_state_dict.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aff082f2df5c3bc52759db0c865c7ee772ae6400b860d1b7e90413f2defb67c
3
+ size 950058171
ext_weights/v1-44.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab6cc15dc31947675f75c950c41f4dcfd0d6d1817555ac871f809ec388e4651a
3
+ size 1221942998
mmaudio/__init__.py ADDED
File without changes
mmaudio/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (158 Bytes). View file
 
mmaudio/__pycache__/eval_utils.cpython-310.pyc ADDED
Binary file (6.8 kB). View file
 
mmaudio/data/__init__.py ADDED
File without changes
mmaudio/data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (163 Bytes). View file
 
mmaudio/data/__pycache__/av_utils.cpython-310.pyc ADDED
Binary file (4.86 kB). View file
 
mmaudio/data/av_utils.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from fractions import Fraction
3
+ from pathlib import Path
4
+ from typing import Optional
5
+
6
+ import av
7
+ import numpy as np
8
+ import torch
9
+ from av import AudioFrame
10
+
11
+
12
+ @dataclass
13
+ class VideoInfo:
14
+ duration_sec: float
15
+ fps: Fraction
16
+ clip_frames: torch.Tensor
17
+ sync_frames: torch.Tensor
18
+ all_frames: Optional[list[np.ndarray]]
19
+
20
+ @property
21
+ def height(self):
22
+ return self.all_frames[0].shape[0]
23
+
24
+ @property
25
+ def width(self):
26
+ return self.all_frames[0].shape[1]
27
+
28
+ @classmethod
29
+ def from_image_info(cls, image_info: 'ImageInfo', duration_sec: float,
30
+ fps: Fraction) -> 'VideoInfo':
31
+ num_frames = int(duration_sec * fps)
32
+ all_frames = [image_info.original_frame] * num_frames
33
+ return cls(duration_sec=duration_sec,
34
+ fps=fps,
35
+ clip_frames=image_info.clip_frames,
36
+ sync_frames=image_info.sync_frames,
37
+ all_frames=all_frames)
38
+
39
+
40
+ @dataclass
41
+ class ImageInfo:
42
+ clip_frames: torch.Tensor
43
+ sync_frames: torch.Tensor
44
+ original_frame: Optional[np.ndarray]
45
+
46
+ @property
47
+ def height(self):
48
+ return self.original_frame.shape[0]
49
+
50
+ @property
51
+ def width(self):
52
+ return self.original_frame.shape[1]
53
+
54
+
55
+ def read_frames(video_path: Path, list_of_fps: list[float], start_sec: float, end_sec: float,
56
+ need_all_frames: bool) -> tuple[list[np.ndarray], list[np.ndarray], Fraction]:
57
+ output_frames = [[] for _ in list_of_fps]
58
+ next_frame_time_for_each_fps = [0.0 for _ in list_of_fps]
59
+ time_delta_for_each_fps = [1 / fps for fps in list_of_fps]
60
+ all_frames = []
61
+
62
+ # container = av.open(video_path)
63
+ with av.open(video_path) as container:
64
+ stream = container.streams.video[0]
65
+ fps = stream.guessed_rate
66
+ stream.thread_type = 'AUTO'
67
+ for packet in container.demux(stream):
68
+ for frame in packet.decode():
69
+ frame_time = frame.time
70
+ if frame_time < start_sec:
71
+ continue
72
+ if frame_time > end_sec:
73
+ break
74
+
75
+ frame_np = None
76
+ if need_all_frames:
77
+ frame_np = frame.to_ndarray(format='rgb24')
78
+ all_frames.append(frame_np)
79
+
80
+ for i, _ in enumerate(list_of_fps):
81
+ this_time = frame_time
82
+ while this_time >= next_frame_time_for_each_fps[i]:
83
+ if frame_np is None:
84
+ frame_np = frame.to_ndarray(format='rgb24')
85
+
86
+ output_frames[i].append(frame_np)
87
+ next_frame_time_for_each_fps[i] += time_delta_for_each_fps[i]
88
+
89
+ output_frames = [np.stack(frames) for frames in output_frames]
90
+ return output_frames, all_frames, fps
91
+
92
+
93
+ def reencode_with_audio(video_info: VideoInfo, output_path: Path, audio: torch.Tensor,
94
+ sampling_rate: int):
95
+ container = av.open(output_path, 'w')
96
+ output_video_stream = container.add_stream('h264', video_info.fps)
97
+ output_video_stream.codec_context.bit_rate = 10 * 1e6 # 10 Mbps
98
+ output_video_stream.width = video_info.width
99
+ output_video_stream.height = video_info.height
100
+ output_video_stream.pix_fmt = 'yuv420p'
101
+
102
+ output_audio_stream = container.add_stream('aac', sampling_rate)
103
+
104
+ # encode video
105
+ for image in video_info.all_frames:
106
+ image = av.VideoFrame.from_ndarray(image)
107
+ packet = output_video_stream.encode(image)
108
+ container.mux(packet)
109
+
110
+ for packet in output_video_stream.encode():
111
+ container.mux(packet)
112
+
113
+ # convert float tensor audio to numpy array
114
+ audio_np = audio.numpy().astype(np.float32)
115
+ audio_frame = AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
116
+ audio_frame.sample_rate = sampling_rate
117
+
118
+ for packet in output_audio_stream.encode(audio_frame):
119
+ container.mux(packet)
120
+
121
+ for packet in output_audio_stream.encode():
122
+ container.mux(packet)
123
+
124
+ container.close()
125
+
126
+
127
+ def remux_with_audio(video_path: Path, audio: torch.Tensor, output_path: Path, sampling_rate: int):
128
+ """
129
+ NOTE: I don't think we can get the exact video duration right without re-encoding
130
+ so we are not using this but keeping it here for reference
131
+ """
132
+ video = av.open(video_path)
133
+ output = av.open(output_path, 'w')
134
+ input_video_stream = video.streams.video[0]
135
+ output_video_stream = output.add_stream(template=input_video_stream)
136
+ output_audio_stream = output.add_stream('aac', sampling_rate)
137
+
138
+ duration_sec = audio.shape[-1] / sampling_rate
139
+
140
+ for packet in video.demux(input_video_stream):
141
+ # We need to skip the "flushing" packets that `demux` generates.
142
+ if packet.dts is None:
143
+ continue
144
+ # We need to assign the packet to the new stream.
145
+ packet.stream = output_video_stream
146
+ output.mux(packet)
147
+
148
+ # convert float tensor audio to numpy array
149
+ audio_np = audio.numpy().astype(np.float32)
150
+ audio_frame = av.AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
151
+ audio_frame.sample_rate = sampling_rate
152
+
153
+ for packet in output_audio_stream.encode(audio_frame):
154
+ output.mux(packet)
155
+
156
+ for packet in output_audio_stream.encode():
157
+ output.mux(packet)
158
+
159
+ video.close()
160
+ output.close()
161
+
162
+ output.close()
mmaudio/data/data_setup.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ from omegaconf import DictConfig
7
+ from torch.utils.data import DataLoader, Dataset
8
+ from torch.utils.data.dataloader import default_collate
9
+ from torch.utils.data.distributed import DistributedSampler
10
+
11
+ from mmaudio.data.eval.audiocaps import AudioCapsData
12
+ from mmaudio.data.eval.video_dataset import MovieGen, VGGSound
13
+ from mmaudio.data.extracted_audio import ExtractedAudio
14
+ from mmaudio.data.extracted_vgg import ExtractedVGG
15
+ from mmaudio.data.mm_dataset import MultiModalDataset
16
+ from mmaudio.utils.dist_utils import local_rank
17
+
18
+ log = logging.getLogger()
19
+
20
+
21
+ # Re-seed randomness every time we start a worker
22
+ def worker_init_fn(worker_id: int):
23
+ worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000
24
+ np.random.seed(worker_seed)
25
+ random.seed(worker_seed)
26
+ log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}')
27
+
28
+
29
+ def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
30
+ dataset = ExtractedVGG(tsv_path=data_cfg.tsv,
31
+ data_dim=cfg.data_dim,
32
+ premade_mmap_dir=data_cfg.memmap_dir)
33
+
34
+ return dataset
35
+
36
+
37
+ def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
38
+ dataset = ExtractedAudio(tsv_path=data_cfg.tsv,
39
+ data_dim=cfg.data_dim,
40
+ premade_mmap_dir=data_cfg.memmap_dir)
41
+
42
+ return dataset
43
+
44
+
45
+ def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]:
46
+ if cfg.mini_train:
47
+ vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
48
+ audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
49
+ dataset = MultiModalDataset([vgg], [audiocaps])
50
+ if cfg.example_train:
51
+ video = load_vgg_data(cfg, cfg.data.Example_video)
52
+ audio = load_audio_data(cfg, cfg.data.Example_audio)
53
+ dataset = MultiModalDataset([video], [audio])
54
+ else:
55
+ # load the largest one first
56
+ freesound = load_audio_data(cfg, cfg.data.FreeSound)
57
+ vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG)
58
+ audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
59
+ audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL)
60
+ bbcsound = load_audio_data(cfg, cfg.data.BBCSound)
61
+ clotho = load_audio_data(cfg, cfg.data.Clotho)
62
+ dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate,
63
+ [audiocaps, audioset_sl, bbcsound, freesound, clotho])
64
+
65
+ batch_size = cfg.batch_size
66
+ num_workers = cfg.num_workers
67
+ pin_memory = cfg.pin_memory
68
+ sampler, loader = construct_loader(dataset,
69
+ batch_size,
70
+ num_workers,
71
+ shuffle=True,
72
+ drop_last=True,
73
+ pin_memory=pin_memory)
74
+
75
+ return dataset, sampler, loader
76
+
77
+
78
+ def setup_test_datasets(cfg):
79
+ dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test)
80
+
81
+ batch_size = cfg.batch_size
82
+ num_workers = cfg.num_workers
83
+ pin_memory = cfg.pin_memory
84
+ sampler, loader = construct_loader(dataset,
85
+ batch_size,
86
+ num_workers,
87
+ shuffle=False,
88
+ drop_last=False,
89
+ pin_memory=pin_memory)
90
+
91
+ return dataset, sampler, loader
92
+
93
+
94
+ def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]:
95
+ if cfg.example_train:
96
+ dataset = load_vgg_data(cfg, cfg.data.Example_video)
97
+ else:
98
+ dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
99
+
100
+ val_batch_size = cfg.batch_size
101
+ val_eval_batch_size = cfg.eval_batch_size
102
+ num_workers = cfg.num_workers
103
+ pin_memory = cfg.pin_memory
104
+ _, val_loader = construct_loader(dataset,
105
+ val_batch_size,
106
+ num_workers,
107
+ shuffle=False,
108
+ drop_last=False,
109
+ pin_memory=pin_memory)
110
+ _, eval_loader = construct_loader(dataset,
111
+ val_eval_batch_size,
112
+ num_workers,
113
+ shuffle=False,
114
+ drop_last=False,
115
+ pin_memory=pin_memory)
116
+
117
+ return dataset, val_loader, eval_loader
118
+
119
+
120
+ def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]:
121
+ if dataset_name.startswith('audiocaps_full'):
122
+ dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path,
123
+ cfg.eval_data.AudioCaps_full.csv_path)
124
+ elif dataset_name.startswith('audiocaps'):
125
+ dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path,
126
+ cfg.eval_data.AudioCaps.csv_path)
127
+ elif dataset_name.startswith('moviegen'):
128
+ dataset = MovieGen(cfg.eval_data.MovieGen.video_path,
129
+ cfg.eval_data.MovieGen.jsonl_path,
130
+ duration_sec=cfg.duration_s)
131
+ elif dataset_name.startswith('vggsound'):
132
+ dataset = VGGSound(cfg.eval_data.VGGSound.video_path,
133
+ cfg.eval_data.VGGSound.csv_path,
134
+ duration_sec=cfg.duration_s)
135
+ else:
136
+ raise ValueError(f'Invalid dataset name: {dataset_name}')
137
+
138
+ batch_size = cfg.batch_size
139
+ num_workers = cfg.num_workers
140
+ pin_memory = cfg.pin_memory
141
+ _, loader = construct_loader(dataset,
142
+ batch_size,
143
+ num_workers,
144
+ shuffle=False,
145
+ drop_last=False,
146
+ pin_memory=pin_memory,
147
+ error_avoidance=True)
148
+ return dataset, loader
149
+
150
+
151
+ def error_avoidance_collate(batch):
152
+ batch = list(filter(lambda x: x is not None, batch))
153
+ return default_collate(batch)
154
+
155
+
156
+ def construct_loader(dataset: Dataset,
157
+ batch_size: int,
158
+ num_workers: int,
159
+ *,
160
+ shuffle: bool = True,
161
+ drop_last: bool = True,
162
+ pin_memory: bool = False,
163
+ error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]:
164
+ train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle)
165
+ train_loader = DataLoader(dataset,
166
+ batch_size,
167
+ sampler=train_sampler,
168
+ num_workers=num_workers,
169
+ worker_init_fn=worker_init_fn,
170
+ drop_last=drop_last,
171
+ persistent_workers=num_workers > 0,
172
+ pin_memory=pin_memory,
173
+ collate_fn=error_avoidance_collate if error_avoidance else None)
174
+ return train_sampler, train_loader
mmaudio/data/eval/__init__.py ADDED
File without changes
mmaudio/data/eval/audiocaps.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from collections import defaultdict
4
+ from pathlib import Path
5
+ from typing import Union
6
+
7
+ import pandas as pd
8
+ import torch
9
+ from torch.utils.data.dataset import Dataset
10
+
11
+ log = logging.getLogger()
12
+
13
+
14
+ class AudioCapsData(Dataset):
15
+
16
+ def __init__(self, audio_path: Union[str, Path], csv_path: Union[str, Path]):
17
+ df = pd.read_csv(csv_path).to_dict(orient='records')
18
+
19
+ audio_files = sorted(os.listdir(audio_path))
20
+ audio_files = set(
21
+ [Path(f).stem for f in audio_files if f.endswith('.wav') or f.endswith('.flac')])
22
+
23
+ self.data = []
24
+ for row in df:
25
+ self.data.append({
26
+ 'name': row['name'],
27
+ 'caption': row['caption'],
28
+ })
29
+
30
+ self.audio_path = Path(audio_path)
31
+ self.csv_path = Path(csv_path)
32
+
33
+ log.info(f'Found {len(self.data)} matching audio files in {self.audio_path}')
34
+
35
+ def __getitem__(self, idx: int) -> torch.Tensor:
36
+ return self.data[idx]
37
+
38
+ def __len__(self):
39
+ return len(self.data)
mmaudio/data/eval/moviegen.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ from pathlib import Path
5
+ from typing import Union
6
+
7
+ import torch
8
+ from torch.utils.data.dataset import Dataset
9
+ from torchvision.transforms import v2
10
+ from torio.io import StreamingMediaDecoder
11
+
12
+ from mmaudio.utils.dist_utils import local_rank
13
+
14
+ log = logging.getLogger()
15
+
16
+ _CLIP_SIZE = 384
17
+ _CLIP_FPS = 8.0
18
+
19
+ _SYNC_SIZE = 224
20
+ _SYNC_FPS = 25.0
21
+
22
+
23
+ class MovieGenData(Dataset):
24
+
25
+ def __init__(
26
+ self,
27
+ video_root: Union[str, Path],
28
+ sync_root: Union[str, Path],
29
+ jsonl_root: Union[str, Path],
30
+ *,
31
+ duration_sec: float = 10.0,
32
+ read_clip: bool = True,
33
+ ):
34
+ self.video_root = Path(video_root)
35
+ self.sync_root = Path(sync_root)
36
+ self.jsonl_root = Path(jsonl_root)
37
+ self.read_clip = read_clip
38
+
39
+ videos = sorted(os.listdir(self.video_root))
40
+ videos = [v[:-4] for v in videos] # remove extensions
41
+ self.captions = {}
42
+
43
+ for v in videos:
44
+ with open(self.jsonl_root / (v + '.jsonl')) as f:
45
+ data = json.load(f)
46
+ self.captions[v] = data['audio_prompt']
47
+
48
+ if local_rank == 0:
49
+ log.info(f'{len(videos)} videos found in {video_root}')
50
+
51
+ self.duration_sec = duration_sec
52
+
53
+ self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
54
+ self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
55
+
56
+ self.clip_augment = v2.Compose([
57
+ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
58
+ v2.ToImage(),
59
+ v2.ToDtype(torch.float32, scale=True),
60
+ ])
61
+
62
+ self.sync_augment = v2.Compose([
63
+ v2.Resize((_SYNC_SIZE, _SYNC_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
64
+ v2.CenterCrop(_SYNC_SIZE),
65
+ v2.ToImage(),
66
+ v2.ToDtype(torch.float32, scale=True),
67
+ v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
68
+ ])
69
+
70
+ self.videos = videos
71
+
72
+ def sample(self, idx: int) -> dict[str, torch.Tensor]:
73
+ video_id = self.videos[idx]
74
+ caption = self.captions[video_id]
75
+
76
+ reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
77
+ reader.add_basic_video_stream(
78
+ frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
79
+ frame_rate=_CLIP_FPS,
80
+ format='rgb24',
81
+ )
82
+ reader.add_basic_video_stream(
83
+ frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
84
+ frame_rate=_SYNC_FPS,
85
+ format='rgb24',
86
+ )
87
+
88
+ reader.fill_buffer()
89
+ data_chunk = reader.pop_chunks()
90
+
91
+ clip_chunk = data_chunk[0]
92
+ sync_chunk = data_chunk[1]
93
+ if clip_chunk is None:
94
+ raise RuntimeError(f'CLIP video returned None {video_id}')
95
+ if clip_chunk.shape[0] < self.clip_expected_length:
96
+ raise RuntimeError(f'CLIP video too short {video_id}')
97
+
98
+ if sync_chunk is None:
99
+ raise RuntimeError(f'Sync video returned None {video_id}')
100
+ if sync_chunk.shape[0] < self.sync_expected_length:
101
+ raise RuntimeError(f'Sync video too short {video_id}')
102
+
103
+ # truncate the video
104
+ clip_chunk = clip_chunk[:self.clip_expected_length]
105
+ if clip_chunk.shape[0] != self.clip_expected_length:
106
+ raise RuntimeError(f'CLIP video wrong length {video_id}, '
107
+ f'expected {self.clip_expected_length}, '
108
+ f'got {clip_chunk.shape[0]}')
109
+ clip_chunk = self.clip_augment(clip_chunk)
110
+
111
+ sync_chunk = sync_chunk[:self.sync_expected_length]
112
+ if sync_chunk.shape[0] != self.sync_expected_length:
113
+ raise RuntimeError(f'Sync video wrong length {video_id}, '
114
+ f'expected {self.sync_expected_length}, '
115
+ f'got {sync_chunk.shape[0]}')
116
+ sync_chunk = self.sync_augment(sync_chunk)
117
+
118
+ data = {
119
+ 'name': video_id,
120
+ 'caption': caption,
121
+ 'clip_video': clip_chunk,
122
+ 'sync_video': sync_chunk,
123
+ }
124
+
125
+ return data
126
+
127
+ def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
128
+ return self.sample(idx)
129
+
130
+ def __len__(self):
131
+ return len(self.captions)
mmaudio/data/eval/video_dataset.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ from pathlib import Path
5
+ from typing import Union
6
+
7
+ import pandas as pd
8
+ import torch
9
+ from torch.utils.data.dataset import Dataset
10
+ from torchvision.transforms import v2
11
+ from torio.io import StreamingMediaDecoder
12
+
13
+ from mmaudio.utils.dist_utils import local_rank
14
+
15
+ log = logging.getLogger()
16
+
17
+ _CLIP_SIZE = 384
18
+ _CLIP_FPS = 8.0
19
+
20
+ _SYNC_SIZE = 224
21
+ _SYNC_FPS = 25.0
22
+
23
+
24
+ class VideoDataset(Dataset):
25
+
26
+ def __init__(
27
+ self,
28
+ video_root: Union[str, Path],
29
+ *,
30
+ duration_sec: float = 8.0,
31
+ ):
32
+ self.video_root = Path(video_root)
33
+
34
+ self.duration_sec = duration_sec
35
+
36
+ self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
37
+ self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
38
+
39
+ self.clip_transform = v2.Compose([
40
+ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
41
+ v2.ToImage(),
42
+ v2.ToDtype(torch.float32, scale=True),
43
+ ])
44
+
45
+ self.sync_transform = v2.Compose([
46
+ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
47
+ v2.CenterCrop(_SYNC_SIZE),
48
+ v2.ToImage(),
49
+ v2.ToDtype(torch.float32, scale=True),
50
+ v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
51
+ ])
52
+
53
+ # to be implemented by subclasses
54
+ self.captions = {}
55
+ self.videos = sorted(list(self.captions.keys()))
56
+
57
+ def sample(self, idx: int) -> dict[str, torch.Tensor]:
58
+ video_id = self.videos[idx]
59
+ caption = self.captions[video_id]
60
+
61
+ reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
62
+ reader.add_basic_video_stream(
63
+ frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
64
+ frame_rate=_CLIP_FPS,
65
+ format='rgb24',
66
+ )
67
+ reader.add_basic_video_stream(
68
+ frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
69
+ frame_rate=_SYNC_FPS,
70
+ format='rgb24',
71
+ )
72
+
73
+ reader.fill_buffer()
74
+ data_chunk = reader.pop_chunks()
75
+
76
+ clip_chunk = data_chunk[0]
77
+ sync_chunk = data_chunk[1]
78
+ if clip_chunk is None:
79
+ raise RuntimeError(f'CLIP video returned None {video_id}')
80
+ if clip_chunk.shape[0] < self.clip_expected_length:
81
+ raise RuntimeError(
82
+ f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
83
+ )
84
+
85
+ if sync_chunk is None:
86
+ raise RuntimeError(f'Sync video returned None {video_id}')
87
+ if sync_chunk.shape[0] < self.sync_expected_length:
88
+ raise RuntimeError(
89
+ f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
90
+ )
91
+
92
+ # truncate the video
93
+ clip_chunk = clip_chunk[:self.clip_expected_length]
94
+ if clip_chunk.shape[0] != self.clip_expected_length:
95
+ raise RuntimeError(f'CLIP video wrong length {video_id}, '
96
+ f'expected {self.clip_expected_length}, '
97
+ f'got {clip_chunk.shape[0]}')
98
+ clip_chunk = self.clip_transform(clip_chunk)
99
+
100
+ sync_chunk = sync_chunk[:self.sync_expected_length]
101
+ if sync_chunk.shape[0] != self.sync_expected_length:
102
+ raise RuntimeError(f'Sync video wrong length {video_id}, '
103
+ f'expected {self.sync_expected_length}, '
104
+ f'got {sync_chunk.shape[0]}')
105
+ sync_chunk = self.sync_transform(sync_chunk)
106
+
107
+ data = {
108
+ 'name': video_id,
109
+ 'caption': caption,
110
+ 'clip_video': clip_chunk,
111
+ 'sync_video': sync_chunk,
112
+ }
113
+
114
+ return data
115
+
116
+ def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
117
+ try:
118
+ return self.sample(idx)
119
+ except Exception as e:
120
+ log.error(f'Error loading video {self.videos[idx]}: {e}')
121
+ return None
122
+
123
+ def __len__(self):
124
+ return len(self.captions)
125
+
126
+
127
+ class VGGSound(VideoDataset):
128
+
129
+ def __init__(
130
+ self,
131
+ video_root: Union[str, Path],
132
+ csv_path: Union[str, Path],
133
+ *,
134
+ duration_sec: float = 8.0,
135
+ ):
136
+ super().__init__(video_root, duration_sec=duration_sec)
137
+ self.video_root = Path(video_root)
138
+ self.csv_path = Path(csv_path)
139
+
140
+ videos = sorted(os.listdir(self.video_root))
141
+ if local_rank == 0:
142
+ log.info(f'{len(videos)} videos found in {video_root}')
143
+ self.captions = {}
144
+
145
+ df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption',
146
+ 'split']).to_dict(orient='records')
147
+
148
+ videos_no_found = []
149
+ for row in df:
150
+ if row['split'] == 'test':
151
+ start_sec = int(row['sec'])
152
+ video_id = str(row['id'])
153
+ # this is how our videos are named
154
+ video_name = f'{video_id}_{start_sec:06d}'
155
+ if video_name + '.mp4' not in videos:
156
+ videos_no_found.append(video_name)
157
+ continue
158
+
159
+ self.captions[video_name] = row['caption']
160
+
161
+ if local_rank == 0:
162
+ log.info(f'{len(videos)} videos found in {video_root}')
163
+ log.info(f'{len(self.captions)} useable videos found')
164
+ if videos_no_found:
165
+ log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}')
166
+ log.info(
167
+ 'A small amount is expected, as not all videos are still available on YouTube')
168
+
169
+ self.videos = sorted(list(self.captions.keys()))
170
+
171
+
172
+ class MovieGen(VideoDataset):
173
+
174
+ def __init__(
175
+ self,
176
+ video_root: Union[str, Path],
177
+ jsonl_root: Union[str, Path],
178
+ *,
179
+ duration_sec: float = 10.0,
180
+ ):
181
+ super().__init__(video_root, duration_sec=duration_sec)
182
+ self.video_root = Path(video_root)
183
+ self.jsonl_root = Path(jsonl_root)
184
+
185
+ videos = sorted(os.listdir(self.video_root))
186
+ videos = [v[:-4] for v in videos] # remove extensions
187
+ self.captions = {}
188
+
189
+ for v in videos:
190
+ with open(self.jsonl_root / (v + '.jsonl')) as f:
191
+ data = json.load(f)
192
+ self.captions[v] = data['audio_prompt']
193
+
194
+ if local_rank == 0:
195
+ log.info(f'{len(videos)} videos found in {video_root}')
196
+
197
+ self.videos = videos
mmaudio/data/extracted_audio.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from pathlib import Path
3
+ from typing import Union
4
+
5
+ import pandas as pd
6
+ import torch
7
+ from tensordict import TensorDict
8
+ from torch.utils.data.dataset import Dataset
9
+
10
+ from mmaudio.utils.dist_utils import local_rank
11
+
12
+ log = logging.getLogger()
13
+
14
+
15
+ class ExtractedAudio(Dataset):
16
+
17
+ def __init__(
18
+ self,
19
+ tsv_path: Union[str, Path],
20
+ *,
21
+ premade_mmap_dir: Union[str, Path],
22
+ data_dim: dict[str, int],
23
+ ):
24
+ super().__init__()
25
+
26
+ self.data_dim = data_dim
27
+ self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
28
+ self.ids = [str(d['id']) for d in self.df_list]
29
+
30
+ log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
31
+ # load precomputed memory mapped tensors
32
+ premade_mmap_dir = Path(premade_mmap_dir)
33
+ td = TensorDict.load_memmap(premade_mmap_dir)
34
+ log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
35
+ self.mean = td['mean']
36
+ self.std = td['std']
37
+ self.text_features = td['text_features']
38
+
39
+ log.info(f'Loaded {len(self)} samples from {premade_mmap_dir}.')
40
+ log.info(f'Loaded mean: {self.mean.shape}.')
41
+ log.info(f'Loaded std: {self.std.shape}.')
42
+ log.info(f'Loaded text features: {self.text_features.shape}.')
43
+
44
+ assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
45
+ f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
46
+ assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
47
+ f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
48
+
49
+ assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
50
+ f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
51
+ assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
52
+ f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
53
+
54
+ self.fake_clip_features = torch.zeros(self.data_dim['clip_seq_len'],
55
+ self.data_dim['clip_dim'])
56
+ self.fake_sync_features = torch.zeros(self.data_dim['sync_seq_len'],
57
+ self.data_dim['sync_dim'])
58
+ self.video_exist = torch.tensor(0, dtype=torch.bool)
59
+ self.text_exist = torch.tensor(1, dtype=torch.bool)
60
+
61
+ def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
62
+ latents = self.mean
63
+ return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
64
+
65
+ def get_memory_mapped_tensor(self) -> TensorDict:
66
+ td = TensorDict({
67
+ 'mean': self.mean,
68
+ 'std': self.std,
69
+ 'text_features': self.text_features,
70
+ })
71
+ return td
72
+
73
+ def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
74
+ data = {
75
+ 'id': str(self.df_list[idx]['id']),
76
+ 'a_mean': self.mean[idx],
77
+ 'a_std': self.std[idx],
78
+ 'clip_features': self.fake_clip_features,
79
+ 'sync_features': self.fake_sync_features,
80
+ 'text_features': self.text_features[idx],
81
+ 'caption': self.df_list[idx]['caption'],
82
+ 'video_exist': self.video_exist,
83
+ 'text_exist': self.text_exist,
84
+ }
85
+ return data
86
+
87
+ def __len__(self):
88
+ return len(self.ids)
mmaudio/data/extracted_vgg.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from pathlib import Path
3
+ from typing import Union
4
+
5
+ import pandas as pd
6
+ import torch
7
+ from tensordict import TensorDict
8
+ from torch.utils.data.dataset import Dataset
9
+
10
+ from mmaudio.utils.dist_utils import local_rank
11
+
12
+ log = logging.getLogger()
13
+
14
+
15
+ class ExtractedVGG(Dataset):
16
+
17
+ def __init__(
18
+ self,
19
+ tsv_path: Union[str, Path],
20
+ *,
21
+ premade_mmap_dir: Union[str, Path],
22
+ data_dim: dict[str, int],
23
+ ):
24
+ super().__init__()
25
+
26
+ self.data_dim = data_dim
27
+ self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
28
+ self.ids = [d['id'] for d in self.df_list]
29
+
30
+ log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
31
+ # load precomputed memory mapped tensors
32
+ premade_mmap_dir = Path(premade_mmap_dir)
33
+ td = TensorDict.load_memmap(premade_mmap_dir)
34
+ log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
35
+ self.mean = td['mean']
36
+ self.std = td['std']
37
+ self.clip_features = td['clip_features']
38
+ self.sync_features = td['sync_features']
39
+ self.text_features = td['text_features']
40
+
41
+ if local_rank == 0:
42
+ log.info(f'Loaded {len(self)} samples.')
43
+ log.info(f'Loaded mean: {self.mean.shape}.')
44
+ log.info(f'Loaded std: {self.std.shape}.')
45
+ log.info(f'Loaded clip_features: {self.clip_features.shape}.')
46
+ log.info(f'Loaded sync_features: {self.sync_features.shape}.')
47
+ log.info(f'Loaded text_features: {self.text_features.shape}.')
48
+
49
+ assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
50
+ f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
51
+ assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
52
+ f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
53
+
54
+ assert self.clip_features.shape[1] == self.data_dim['clip_seq_len'], \
55
+ f'{self.clip_features.shape[1]} != {self.data_dim["clip_seq_len"]}'
56
+ assert self.sync_features.shape[1] == self.data_dim['sync_seq_len'], \
57
+ f'{self.sync_features.shape[1]} != {self.data_dim["sync_seq_len"]}'
58
+ assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
59
+ f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
60
+
61
+ assert self.clip_features.shape[-1] == self.data_dim['clip_dim'], \
62
+ f'{self.clip_features.shape[-1]} != {self.data_dim["clip_dim"]}'
63
+ assert self.sync_features.shape[-1] == self.data_dim['sync_dim'], \
64
+ f'{self.sync_features.shape[-1]} != {self.data_dim["sync_dim"]}'
65
+ assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
66
+ f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
67
+
68
+ self.video_exist = torch.tensor(1, dtype=torch.bool)
69
+ self.text_exist = torch.tensor(1, dtype=torch.bool)
70
+
71
+ def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
72
+ latents = self.mean
73
+ return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
74
+
75
+ def get_memory_mapped_tensor(self) -> TensorDict:
76
+ td = TensorDict({
77
+ 'mean': self.mean,
78
+ 'std': self.std,
79
+ 'clip_features': self.clip_features,
80
+ 'sync_features': self.sync_features,
81
+ 'text_features': self.text_features,
82
+ })
83
+ return td
84
+
85
+ def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
86
+ data = {
87
+ 'id': self.df_list[idx]['id'],
88
+ 'a_mean': self.mean[idx],
89
+ 'a_std': self.std[idx],
90
+ 'clip_features': self.clip_features[idx],
91
+ 'sync_features': self.sync_features[idx],
92
+ 'text_features': self.text_features[idx],
93
+ 'caption': self.df_list[idx]['label'],
94
+ 'video_exist': self.video_exist,
95
+ 'text_exist': self.text_exist,
96
+ }
97
+
98
+ return data
99
+
100
+ def __len__(self):
101
+ return len(self.ids)
mmaudio/data/extraction/__init__.py ADDED
File without changes
mmaudio/data/extraction/vgg_sound.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from pathlib import Path
4
+ from typing import Optional, Union
5
+
6
+ import pandas as pd
7
+ import torch
8
+ import torchaudio
9
+ from torch.utils.data.dataset import Dataset
10
+ from torchvision.transforms import v2
11
+ from torio.io import StreamingMediaDecoder
12
+
13
+ from mmaudio.utils.dist_utils import local_rank
14
+
15
+ log = logging.getLogger()
16
+
17
+ _CLIP_SIZE = 384
18
+ _CLIP_FPS = 8.0
19
+
20
+ _SYNC_SIZE = 224
21
+ _SYNC_FPS = 25.0
22
+
23
+
24
+ class VGGSound(Dataset):
25
+
26
+ def __init__(
27
+ self,
28
+ root: Union[str, Path],
29
+ *,
30
+ tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv',
31
+ sample_rate: int = 16_000,
32
+ duration_sec: float = 8.0,
33
+ audio_samples: Optional[int] = None,
34
+ normalize_audio: bool = False,
35
+ ):
36
+ self.root = Path(root)
37
+ self.normalize_audio = normalize_audio
38
+ if audio_samples is None:
39
+ self.audio_samples = int(sample_rate * duration_sec)
40
+ else:
41
+ self.audio_samples = audio_samples
42
+ effective_duration = audio_samples / sample_rate
43
+ # make sure the duration is close enough, within 15ms
44
+ assert abs(effective_duration - duration_sec) < 0.015, \
45
+ f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'
46
+
47
+ videos = sorted(os.listdir(self.root))
48
+ videos = set([Path(v).stem for v in videos]) # remove extensions
49
+ self.labels = {}
50
+ self.videos = []
51
+ missing_videos = []
52
+
53
+ # read the tsv for subset information
54
+ df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records')
55
+ for record in df_list:
56
+ id = record['id']
57
+ label = record['label']
58
+ if id in videos:
59
+ self.labels[id] = label
60
+ self.videos.append(id)
61
+ else:
62
+ missing_videos.append(id)
63
+
64
+ if local_rank == 0:
65
+ log.info(f'{len(videos)} videos found in {root}')
66
+ log.info(f'{len(self.videos)} videos found in {tsv_path}')
67
+ log.info(f'{len(missing_videos)} videos missing in {root}')
68
+
69
+ self.sample_rate = sample_rate
70
+ self.duration_sec = duration_sec
71
+
72
+ self.expected_audio_length = audio_samples
73
+ self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
74
+ self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
75
+
76
+ self.clip_transform = v2.Compose([
77
+ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
78
+ v2.ToImage(),
79
+ v2.ToDtype(torch.float32, scale=True),
80
+ ])
81
+
82
+ self.sync_transform = v2.Compose([
83
+ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
84
+ v2.CenterCrop(_SYNC_SIZE),
85
+ v2.ToImage(),
86
+ v2.ToDtype(torch.float32, scale=True),
87
+ v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
88
+ ])
89
+
90
+ self.resampler = {}
91
+
92
+ def sample(self, idx: int) -> dict[str, torch.Tensor]:
93
+ video_id = self.videos[idx]
94
+ label = self.labels[video_id]
95
+
96
+ reader = StreamingMediaDecoder(self.root / (video_id + '.mp4'))
97
+ reader.add_basic_video_stream(
98
+ frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
99
+ frame_rate=_CLIP_FPS,
100
+ format='rgb24',
101
+ )
102
+ reader.add_basic_video_stream(
103
+ frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
104
+ frame_rate=_SYNC_FPS,
105
+ format='rgb24',
106
+ )
107
+ reader.add_basic_audio_stream(frames_per_chunk=2**30, )
108
+
109
+ reader.fill_buffer()
110
+ data_chunk = reader.pop_chunks()
111
+
112
+ clip_chunk = data_chunk[0]
113
+ sync_chunk = data_chunk[1]
114
+ audio_chunk = data_chunk[2]
115
+
116
+ if clip_chunk is None:
117
+ raise RuntimeError(f'CLIP video returned None {video_id}')
118
+ if clip_chunk.shape[0] < self.clip_expected_length:
119
+ raise RuntimeError(
120
+ f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
121
+ )
122
+
123
+ if sync_chunk is None:
124
+ raise RuntimeError(f'Sync video returned None {video_id}')
125
+ if sync_chunk.shape[0] < self.sync_expected_length:
126
+ raise RuntimeError(
127
+ f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
128
+ )
129
+
130
+ # process audio
131
+ sample_rate = int(reader.get_out_stream_info(2).sample_rate)
132
+ audio_chunk = audio_chunk.transpose(0, 1)
133
+ audio_chunk = audio_chunk.mean(dim=0) # mono
134
+ if self.normalize_audio:
135
+ abs_max = audio_chunk.abs().max()
136
+ audio_chunk = audio_chunk / abs_max * 0.95
137
+ if abs_max <= 1e-6:
138
+ raise RuntimeError(f'Audio is silent {video_id}')
139
+
140
+ # resample
141
+ if sample_rate == self.sample_rate:
142
+ audio_chunk = audio_chunk
143
+ else:
144
+ if sample_rate not in self.resampler:
145
+ # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
146
+ self.resampler[sample_rate] = torchaudio.transforms.Resample(
147
+ sample_rate,
148
+ self.sample_rate,
149
+ lowpass_filter_width=64,
150
+ rolloff=0.9475937167399596,
151
+ resampling_method='sinc_interp_kaiser',
152
+ beta=14.769656459379492,
153
+ )
154
+ audio_chunk = self.resampler[sample_rate](audio_chunk)
155
+
156
+ if audio_chunk.shape[0] < self.expected_audio_length:
157
+ raise RuntimeError(f'Audio too short {video_id}')
158
+ audio_chunk = audio_chunk[:self.expected_audio_length]
159
+
160
+ # truncate the video
161
+ clip_chunk = clip_chunk[:self.clip_expected_length]
162
+ if clip_chunk.shape[0] != self.clip_expected_length:
163
+ raise RuntimeError(f'CLIP video wrong length {video_id}, '
164
+ f'expected {self.clip_expected_length}, '
165
+ f'got {clip_chunk.shape[0]}')
166
+ clip_chunk = self.clip_transform(clip_chunk)
167
+
168
+ sync_chunk = sync_chunk[:self.sync_expected_length]
169
+ if sync_chunk.shape[0] != self.sync_expected_length:
170
+ raise RuntimeError(f'Sync video wrong length {video_id}, '
171
+ f'expected {self.sync_expected_length}, '
172
+ f'got {sync_chunk.shape[0]}')
173
+ sync_chunk = self.sync_transform(sync_chunk)
174
+
175
+ data = {
176
+ 'id': video_id,
177
+ 'caption': label,
178
+ 'audio': audio_chunk,
179
+ 'clip_video': clip_chunk,
180
+ 'sync_video': sync_chunk,
181
+ }
182
+
183
+ return data
184
+
185
+ def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
186
+ try:
187
+ return self.sample(idx)
188
+ except Exception as e:
189
+ log.error(f'Error loading video {self.videos[idx]}: {e}')
190
+ return None
191
+
192
+ def __len__(self):
193
+ return len(self.labels)
mmaudio/data/extraction/wav_dataset.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ from pathlib import Path
4
+ from typing import Union
5
+
6
+ import open_clip
7
+ import pandas as pd
8
+ import torch
9
+ import torchaudio
10
+ from torch.utils.data.dataset import Dataset
11
+
12
+ log = logging.getLogger()
13
+
14
+
15
+ class WavTextClipsDataset(Dataset):
16
+
17
+ def __init__(
18
+ self,
19
+ root: Union[str, Path],
20
+ *,
21
+ captions_tsv: Union[str, Path],
22
+ clips_tsv: Union[str, Path],
23
+ sample_rate: int,
24
+ num_samples: int,
25
+ normalize_audio: bool = False,
26
+ reject_silent: bool = False,
27
+ tokenizer_id: str = 'ViT-H-14-378-quickgelu',
28
+ ):
29
+ self.root = Path(root)
30
+ self.sample_rate = sample_rate
31
+ self.num_samples = num_samples
32
+ self.normalize_audio = normalize_audio
33
+ self.reject_silent = reject_silent
34
+ self.tokenizer = open_clip.get_tokenizer(tokenizer_id)
35
+
36
+ audios = sorted(os.listdir(self.root))
37
+ audios = set([
38
+ Path(audio).stem for audio in audios
39
+ if audio.endswith('.wav') or audio.endswith('.flac')
40
+ ])
41
+ self.captions = {}
42
+
43
+ # read the caption tsv
44
+ df_list = pd.read_csv(captions_tsv, sep='\t', dtype={'id': str}).to_dict('records')
45
+ for record in df_list:
46
+ id = record['id']
47
+ caption = record['caption']
48
+ self.captions[id] = caption
49
+
50
+ # read the clip tsv
51
+ df_list = pd.read_csv(clips_tsv, sep='\t', dtype={
52
+ 'id': str,
53
+ 'name': str
54
+ }).to_dict('records')
55
+ self.clips = []
56
+ for record in df_list:
57
+ record['id'] = record['id']
58
+ record['name'] = record['name']
59
+ id = record['id']
60
+ name = record['name']
61
+ if name not in self.captions:
62
+ log.warning(f'Audio {name} not found in {captions_tsv}')
63
+ continue
64
+ record['caption'] = self.captions[name]
65
+ self.clips.append(record)
66
+
67
+ log.info(f'Found {len(self.clips)} audio files in {self.root}')
68
+
69
+ self.resampler = {}
70
+
71
+ def __getitem__(self, idx: int) -> torch.Tensor:
72
+ try:
73
+ clip = self.clips[idx]
74
+ audio_name = clip['name']
75
+ audio_id = clip['id']
76
+ caption = clip['caption']
77
+ start_sample = clip['start_sample']
78
+ end_sample = clip['end_sample']
79
+
80
+ audio_path = self.root / f'{audio_name}.flac'
81
+ if not audio_path.exists():
82
+ audio_path = self.root / f'{audio_name}.wav'
83
+ assert audio_path.exists()
84
+
85
+ audio_chunk, sample_rate = torchaudio.load(audio_path)
86
+ audio_chunk = audio_chunk.mean(dim=0) # mono
87
+ abs_max = audio_chunk.abs().max()
88
+ if self.normalize_audio:
89
+ audio_chunk = audio_chunk / abs_max * 0.95
90
+
91
+ if self.reject_silent and abs_max < 1e-6:
92
+ log.warning(f'Rejecting silent audio')
93
+ return None
94
+
95
+ audio_chunk = audio_chunk[start_sample:end_sample]
96
+
97
+ # resample
98
+ if sample_rate == self.sample_rate:
99
+ audio_chunk = audio_chunk
100
+ else:
101
+ if sample_rate not in self.resampler:
102
+ # https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
103
+ self.resampler[sample_rate] = torchaudio.transforms.Resample(
104
+ sample_rate,
105
+ self.sample_rate,
106
+ lowpass_filter_width=64,
107
+ rolloff=0.9475937167399596,
108
+ resampling_method='sinc_interp_kaiser',
109
+ beta=14.769656459379492,
110
+ )
111
+ audio_chunk = self.resampler[sample_rate](audio_chunk)
112
+
113
+ if audio_chunk.shape[0] < self.num_samples:
114
+ raise ValueError('Audio is too short')
115
+ audio_chunk = audio_chunk[:self.num_samples]
116
+
117
+ tokens = self.tokenizer([caption])[0]
118
+
119
+ output = {
120
+ 'waveform': audio_chunk,
121
+ 'id': audio_id,
122
+ 'caption': caption,
123
+ 'tokens': tokens,
124
+ }
125
+
126
+ return output
127
+ except Exception as e:
128
+ log.error(f'Error reading {audio_path}: {e}')
129
+ return None
130
+
131
+ def __len__(self):
132
+ return len(self.clips)
mmaudio/data/mm_dataset.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bisect
2
+
3
+ import torch
4
+ from torch.utils.data.dataset import Dataset
5
+
6
+
7
+ # modified from https://pytorch.org/docs/stable/_modules/torch/utils/data/dataset.html#ConcatDataset
8
+ class MultiModalDataset(Dataset):
9
+ datasets: list[Dataset]
10
+ cumulative_sizes: list[int]
11
+
12
+ @staticmethod
13
+ def cumsum(sequence):
14
+ r, s = [], 0
15
+ for e in sequence:
16
+ l = len(e)
17
+ r.append(l + s)
18
+ s += l
19
+ return r
20
+
21
+ def __init__(self, video_datasets: list[Dataset], audio_datasets: list[Dataset]):
22
+ super().__init__()
23
+ self.video_datasets = list(video_datasets)
24
+ self.audio_datasets = list(audio_datasets)
25
+ self.datasets = self.video_datasets + self.audio_datasets
26
+
27
+ self.cumulative_sizes = self.cumsum(self.datasets)
28
+
29
+ def __len__(self):
30
+ return self.cumulative_sizes[-1]
31
+
32
+ def __getitem__(self, idx):
33
+ if idx < 0:
34
+ if -idx > len(self):
35
+ raise ValueError("absolute value of index should not exceed dataset length")
36
+ idx = len(self) + idx
37
+ dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
38
+ if dataset_idx == 0:
39
+ sample_idx = idx
40
+ else:
41
+ sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
42
+ return self.datasets[dataset_idx][sample_idx]
43
+
44
+ def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
45
+ return self.video_datasets[0].compute_latent_stats()
mmaudio/data/utils.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import random
4
+ import tempfile
5
+ from pathlib import Path
6
+ from typing import Any, Optional, Union
7
+
8
+ import torch
9
+ import torch.distributed as dist
10
+ from tensordict import MemoryMappedTensor
11
+ from torch.utils.data import DataLoader
12
+ from torch.utils.data.dataset import Dataset
13
+ from tqdm import tqdm
14
+
15
+ from mmaudio.utils.dist_utils import local_rank, world_size
16
+
17
+ scratch_path = Path(os.environ['SLURM_SCRATCH'] if 'SLURM_SCRATCH' in os.environ else '/dev/shm')
18
+ shm_path = Path('/dev/shm')
19
+
20
+ log = logging.getLogger()
21
+
22
+
23
+ def reseed(seed):
24
+ random.seed(seed)
25
+ torch.manual_seed(seed)
26
+
27
+
28
+ def local_scatter_torch(obj: Optional[Any]):
29
+ if world_size == 1:
30
+ # Just one worker. Do nothing.
31
+ return obj
32
+
33
+ array = [obj] * world_size
34
+ target_array = [None]
35
+ if local_rank == 0:
36
+ dist.scatter_object_list(target_array, scatter_object_input_list=array, src=0)
37
+ else:
38
+ dist.scatter_object_list(target_array, scatter_object_input_list=None, src=0)
39
+ return target_array[0]
40
+
41
+
42
+ class ShardDataset(Dataset):
43
+
44
+ def __init__(self, root):
45
+ self.root = root
46
+ self.shards = sorted(os.listdir(root))
47
+
48
+ def __len__(self):
49
+ return len(self.shards)
50
+
51
+ def __getitem__(self, idx):
52
+ return torch.load(os.path.join(self.root, self.shards[idx]), weights_only=True)
53
+
54
+
55
+ def get_tmp_dir(in_memory: bool) -> Path:
56
+ return shm_path if in_memory else scratch_path
57
+
58
+
59
+ def load_shards_and_share(data_path: Union[str, Path], ids: list[int],
60
+ in_memory: bool) -> MemoryMappedTensor:
61
+ if local_rank == 0:
62
+ with tempfile.NamedTemporaryFile(prefix='shared-tensor-', dir=get_tmp_dir(in_memory)) as f:
63
+ log.info(f'Loading shards from {data_path} into {f.name}...')
64
+ data = load_shards(data_path, ids=ids, tmp_file_path=f.name)
65
+ data = share_tensor_to_all(data)
66
+ torch.distributed.barrier()
67
+ f.close() # why does the context manager not close the file for me?
68
+ else:
69
+ log.info('Waiting for the data to be shared with me...')
70
+ data = share_tensor_to_all(None)
71
+ torch.distributed.barrier()
72
+
73
+ return data
74
+
75
+
76
+ def load_shards(
77
+ data_path: Union[str, Path],
78
+ ids: list[int],
79
+ *,
80
+ tmp_file_path: str,
81
+ ) -> Union[torch.Tensor, dict[str, torch.Tensor]]:
82
+
83
+ id_set = set(ids)
84
+ shards = sorted(os.listdir(data_path))
85
+ log.info(f'Found {len(shards)} shards in {data_path}.')
86
+ first_shard = torch.load(os.path.join(data_path, shards[0]), weights_only=True)
87
+
88
+ log.info(f'Rank {local_rank} created file {tmp_file_path}')
89
+ first_item = next(iter(first_shard.values()))
90
+ log.info(f'First item shape: {first_item.shape}')
91
+ mm_tensor = MemoryMappedTensor.empty(shape=(len(ids), *first_item.shape),
92
+ dtype=torch.float32,
93
+ filename=tmp_file_path,
94
+ existsok=True)
95
+ total_count = 0
96
+ used_index = set()
97
+ id_indexing = {i: idx for idx, i in enumerate(ids)}
98
+ # faster with no workers; otherwise we need to set_sharing_strategy('file_system')
99
+ loader = DataLoader(ShardDataset(data_path), batch_size=1, num_workers=0)
100
+ for data in tqdm(loader, desc='Loading shards'):
101
+ for i, v in data.items():
102
+ if i not in id_set:
103
+ continue
104
+
105
+ # tensor_index = ids.index(i)
106
+ tensor_index = id_indexing[i]
107
+ if tensor_index in used_index:
108
+ raise ValueError(f'Duplicate id {i} found in {data_path}.')
109
+ used_index.add(tensor_index)
110
+ mm_tensor[tensor_index] = v
111
+ total_count += 1
112
+
113
+ assert total_count == len(ids), f'Expected {len(ids)} tensors, got {total_count}.'
114
+ log.info(f'Loaded {total_count} tensors from {data_path}.')
115
+
116
+ return mm_tensor
117
+
118
+
119
+ def share_tensor_to_all(x: Optional[MemoryMappedTensor]) -> MemoryMappedTensor:
120
+ """
121
+ x: the tensor to be shared; None if local_rank != 0
122
+ return: the shared tensor
123
+ """
124
+
125
+ # there is no need to share your stuff with anyone if you are alone; must be in memory
126
+ if world_size == 1:
127
+ return x
128
+
129
+ if local_rank == 0:
130
+ assert x is not None, 'x must not be None if local_rank == 0'
131
+ else:
132
+ assert x is None, 'x must be None if local_rank != 0'
133
+
134
+ if local_rank == 0:
135
+ filename = x.filename
136
+ meta_information = (filename, x.shape, x.dtype)
137
+ else:
138
+ meta_information = None
139
+
140
+ filename, data_shape, data_type = local_scatter_torch(meta_information)
141
+ if local_rank == 0:
142
+ data = x
143
+ else:
144
+ data = MemoryMappedTensor.from_filename(filename=filename,
145
+ dtype=data_type,
146
+ shape=data_shape)
147
+
148
+ return data
mmaudio/eval_utils.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ import logging
3
+ from pathlib import Path
4
+ from typing import Optional
5
+
6
+ import numpy as np
7
+ import torch
8
+ from colorlog import ColoredFormatter
9
+ from PIL import Image
10
+ from torchvision.transforms import v2
11
+
12
+ from mmaudio.data.av_utils import ImageInfo, VideoInfo, read_frames, reencode_with_audio
13
+ from mmaudio.model.flow_matching import FlowMatching
14
+ from mmaudio.model.networks import MMAudio
15
+ from mmaudio.model.sequence_config import CONFIG_16K, CONFIG_44K, SequenceConfig
16
+ from mmaudio.model.utils.features_utils import FeaturesUtils
17
+ from mmaudio.utils.download_utils import download_model_if_needed
18
+
19
+ log = logging.getLogger()
20
+
21
+
22
+ @dataclasses.dataclass
23
+ class ModelConfig:
24
+ model_name: str
25
+ model_path: Path
26
+ vae_path: Path
27
+ bigvgan_16k_path: Optional[Path]
28
+ mode: str
29
+ synchformer_ckpt: Path = Path('./ext_weights/synchformer_state_dict.pth')
30
+
31
+ @property
32
+ def seq_cfg(self) -> SequenceConfig:
33
+ if self.mode == '16k':
34
+ return CONFIG_16K
35
+ elif self.mode == '44k':
36
+ return CONFIG_44K
37
+
38
+ def download_if_needed(self):
39
+ download_model_if_needed(self.model_path)
40
+ download_model_if_needed(self.vae_path)
41
+ if self.bigvgan_16k_path is not None:
42
+ download_model_if_needed(self.bigvgan_16k_path)
43
+ download_model_if_needed(self.synchformer_ckpt)
44
+
45
+
46
+ small_16k = ModelConfig(model_name='small_16k',
47
+ model_path=Path('./weights/mmaudio_small_16k.pth'),
48
+ vae_path=Path('./ext_weights/v1-16.pth'),
49
+ bigvgan_16k_path=Path('./ext_weights/best_netG.pt'),
50
+ mode='16k')
51
+ small_44k = ModelConfig(model_name='small_44k',
52
+ model_path=Path('./weights/mmaudio_small_44k.pth'),
53
+ vae_path=Path('./ext_weights/v1-44.pth'),
54
+ bigvgan_16k_path=None,
55
+ mode='44k')
56
+ medium_44k = ModelConfig(model_name='medium_44k',
57
+ model_path=Path('./weights/mmaudio_medium_44k.pth'),
58
+ vae_path=Path('./ext_weights/v1-44.pth'),
59
+ bigvgan_16k_path=None,
60
+ mode='44k')
61
+ large_44k = ModelConfig(model_name='large_44k',
62
+ model_path=Path('./weights/mmaudio_large_44k.pth'),
63
+ vae_path=Path('./ext_weights/v1-44.pth'),
64
+ bigvgan_16k_path=None,
65
+ mode='44k')
66
+ large_44k_v2 = ModelConfig(model_name='large_44k_v2',
67
+ model_path=Path('./weights/mmaudio_large_44k_v2.pth'),
68
+ vae_path=Path('./ext_weights/v1-44.pth'),
69
+ bigvgan_16k_path=None,
70
+ mode='44k')
71
+ all_model_cfg: dict[str, ModelConfig] = {
72
+ 'small_16k': small_16k,
73
+ 'small_44k': small_44k,
74
+ 'medium_44k': medium_44k,
75
+ 'large_44k': large_44k,
76
+ 'large_44k_v2': large_44k_v2,
77
+ }
78
+
79
+
80
+ def generate(
81
+ clip_video: Optional[torch.Tensor],
82
+ sync_video: Optional[torch.Tensor],
83
+ text: Optional[list[str]],
84
+ *,
85
+ negative_text: Optional[list[str]] = None,
86
+ feature_utils: FeaturesUtils,
87
+ net: MMAudio,
88
+ fm: FlowMatching,
89
+ rng: torch.Generator,
90
+ cfg_strength: float,
91
+ clip_batch_size_multiplier: int = 40,
92
+ sync_batch_size_multiplier: int = 40,
93
+ image_input: bool = False,
94
+ ) -> torch.Tensor:
95
+ device = feature_utils.device
96
+ dtype = feature_utils.dtype
97
+
98
+ bs = len(text)
99
+ if clip_video is not None:
100
+ clip_video = clip_video.to(device, dtype, non_blocking=True)
101
+ clip_features = feature_utils.encode_video_with_clip(clip_video,
102
+ batch_size=bs *
103
+ clip_batch_size_multiplier)
104
+ if image_input:
105
+ clip_features = clip_features.expand(-1, net.clip_seq_len, -1)
106
+ else:
107
+ clip_features = net.get_empty_clip_sequence(bs)
108
+
109
+ if sync_video is not None and not image_input:
110
+ sync_video = sync_video.to(device, dtype, non_blocking=True)
111
+ sync_features = feature_utils.encode_video_with_sync(sync_video,
112
+ batch_size=bs *
113
+ sync_batch_size_multiplier)
114
+ else:
115
+ sync_features = net.get_empty_sync_sequence(bs)
116
+
117
+ if text is not None:
118
+ text_features = feature_utils.encode_text(text)
119
+ else:
120
+ text_features = net.get_empty_string_sequence(bs)
121
+
122
+ if negative_text is not None:
123
+ assert len(negative_text) == bs
124
+ negative_text_features = feature_utils.encode_text(negative_text)
125
+ else:
126
+ negative_text_features = net.get_empty_string_sequence(bs)
127
+
128
+ x0 = torch.randn(bs,
129
+ net.latent_seq_len,
130
+ net.latent_dim,
131
+ device=device,
132
+ dtype=dtype,
133
+ generator=rng)
134
+ preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features)
135
+ empty_conditions = net.get_empty_conditions(
136
+ bs, negative_text_features=negative_text_features if negative_text is not None else None)
137
+
138
+ cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
139
+ cfg_strength)
140
+ x1 = fm.to_data(cfg_ode_wrapper, x0)
141
+ x1 = net.unnormalize(x1)
142
+ spec = feature_utils.decode(x1)
143
+ audio = feature_utils.vocode(spec)
144
+ return audio
145
+
146
+
147
+ LOGFORMAT = "[%(log_color)s%(levelname)-8s%(reset)s]: %(log_color)s%(message)s%(reset)s"
148
+
149
+
150
+ def setup_eval_logging(log_level: int = logging.INFO):
151
+ logging.root.setLevel(log_level)
152
+ formatter = ColoredFormatter(LOGFORMAT)
153
+ stream = logging.StreamHandler()
154
+ stream.setLevel(log_level)
155
+ stream.setFormatter(formatter)
156
+ log = logging.getLogger()
157
+ log.setLevel(log_level)
158
+ log.addHandler(stream)
159
+
160
+
161
+ _CLIP_SIZE = 384
162
+ _CLIP_FPS = 8.0
163
+
164
+ _SYNC_SIZE = 224
165
+ _SYNC_FPS = 25.0
166
+
167
+
168
+ def load_video(video_path: Path, duration_sec: float, load_all_frames: bool = True) -> VideoInfo:
169
+
170
+ clip_transform = v2.Compose([
171
+ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
172
+ v2.ToImage(),
173
+ v2.ToDtype(torch.float32, scale=True),
174
+ ])
175
+
176
+ sync_transform = v2.Compose([
177
+ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
178
+ v2.CenterCrop(_SYNC_SIZE),
179
+ v2.ToImage(),
180
+ v2.ToDtype(torch.float32, scale=True),
181
+ v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
182
+ ])
183
+
184
+ output_frames, all_frames, orig_fps = read_frames(video_path,
185
+ list_of_fps=[_CLIP_FPS, _SYNC_FPS],
186
+ start_sec=0,
187
+ end_sec=duration_sec,
188
+ need_all_frames=load_all_frames)
189
+
190
+ clip_chunk, sync_chunk = output_frames
191
+ clip_chunk = torch.from_numpy(clip_chunk).permute(0, 3, 1, 2)
192
+ sync_chunk = torch.from_numpy(sync_chunk).permute(0, 3, 1, 2)
193
+
194
+ clip_frames = clip_transform(clip_chunk)
195
+ sync_frames = sync_transform(sync_chunk)
196
+
197
+ clip_length_sec = clip_frames.shape[0] / _CLIP_FPS
198
+ sync_length_sec = sync_frames.shape[0] / _SYNC_FPS
199
+
200
+ if clip_length_sec < duration_sec:
201
+ log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}')
202
+ log.warning(f'Truncating to {clip_length_sec:.2f} sec')
203
+ duration_sec = clip_length_sec
204
+
205
+ if sync_length_sec < duration_sec:
206
+ log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}')
207
+ log.warning(f'Truncating to {sync_length_sec:.2f} sec')
208
+ duration_sec = sync_length_sec
209
+
210
+ clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)]
211
+ sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)]
212
+
213
+ video_info = VideoInfo(
214
+ duration_sec=duration_sec,
215
+ fps=orig_fps,
216
+ clip_frames=clip_frames,
217
+ sync_frames=sync_frames,
218
+ all_frames=all_frames if load_all_frames else None,
219
+ )
220
+ return video_info
221
+
222
+
223
+ def load_image(image_path: Path) -> VideoInfo:
224
+ clip_transform = v2.Compose([
225
+ v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
226
+ v2.ToImage(),
227
+ v2.ToDtype(torch.float32, scale=True),
228
+ ])
229
+
230
+ sync_transform = v2.Compose([
231
+ v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
232
+ v2.CenterCrop(_SYNC_SIZE),
233
+ v2.ToImage(),
234
+ v2.ToDtype(torch.float32, scale=True),
235
+ v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
236
+ ])
237
+
238
+ frame = np.array(Image.open(image_path))
239
+
240
+ clip_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
241
+ sync_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
242
+
243
+ clip_frames = clip_transform(clip_chunk)
244
+ sync_frames = sync_transform(sync_chunk)
245
+
246
+ video_info = ImageInfo(
247
+ clip_frames=clip_frames,
248
+ sync_frames=sync_frames,
249
+ original_frame=frame,
250
+ )
251
+ return video_info
252
+
253
+
254
+ def make_video(video_info: VideoInfo, output_path: Path, audio: torch.Tensor, sampling_rate: int):
255
+ reencode_with_audio(video_info, output_path, audio, sampling_rate)
mmaudio/ext/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
mmaudio/ext/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (162 Bytes). View file
 
mmaudio/ext/__pycache__/mel_converter.cpython-310.pyc ADDED
Binary file (2.84 kB). View file
 
mmaudio/ext/__pycache__/rotary_embeddings.cpython-310.pyc ADDED
Binary file (1.44 kB). View file
 
mmaudio/ext/autoencoder/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .autoencoder import AutoEncoderModule
mmaudio/ext/autoencoder/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (227 Bytes). View file
 
mmaudio/ext/autoencoder/__pycache__/autoencoder.cpython-310.pyc ADDED
Binary file (2.11 kB). View file
 
mmaudio/ext/autoencoder/__pycache__/edm2_utils.cpython-310.pyc ADDED
Binary file (4.65 kB). View file
 
mmaudio/ext/autoencoder/__pycache__/vae.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
mmaudio/ext/autoencoder/__pycache__/vae_modules.cpython-310.pyc ADDED
Binary file (3.61 kB). View file
 
mmaudio/ext/autoencoder/autoencoder.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal, Optional
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ from mmaudio.ext.autoencoder.vae import VAE, get_my_vae
7
+ from mmaudio.ext.bigvgan import BigVGAN
8
+ from mmaudio.ext.bigvgan_v2.bigvgan import BigVGAN as BigVGANv2
9
+ from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
10
+
11
+
12
+ class AutoEncoderModule(nn.Module):
13
+
14
+ def __init__(self,
15
+ *,
16
+ vae_ckpt_path,
17
+ vocoder_ckpt_path: Optional[str] = None,
18
+ mode: Literal['16k', '44k'],
19
+ need_vae_encoder: bool = True):
20
+ super().__init__()
21
+ self.vae: VAE = get_my_vae(mode).eval()
22
+ vae_state_dict = torch.load(vae_ckpt_path, weights_only=True, map_location='cpu')
23
+ self.vae.load_state_dict(vae_state_dict)
24
+ self.vae.remove_weight_norm()
25
+
26
+ if mode == '16k':
27
+ assert vocoder_ckpt_path is not None
28
+ self.vocoder = BigVGAN(vocoder_ckpt_path).eval()
29
+ elif mode == '44k':
30
+ self.vocoder = BigVGANv2.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x',
31
+ use_cuda_kernel=False)
32
+ self.vocoder.remove_weight_norm()
33
+ else:
34
+ raise ValueError(f'Unknown mode: {mode}')
35
+
36
+ for param in self.parameters():
37
+ param.requires_grad = False
38
+
39
+ if not need_vae_encoder:
40
+ del self.vae.encoder
41
+
42
+ @torch.inference_mode()
43
+ def encode(self, x: torch.Tensor) -> DiagonalGaussianDistribution:
44
+ return self.vae.encode(x)
45
+
46
+ @torch.inference_mode()
47
+ def decode(self, z: torch.Tensor) -> torch.Tensor:
48
+ return self.vae.decode(z)
49
+
50
+ @torch.inference_mode()
51
+ def vocode(self, spec: torch.Tensor) -> torch.Tensor:
52
+ return self.vocoder(spec)
mmaudio/ext/autoencoder/edm2_utils.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ #
3
+ # This work is licensed under a Creative Commons
4
+ # Attribution-NonCommercial-ShareAlike 4.0 International License.
5
+ # You should have received a copy of the license along with this
6
+ # work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
7
+ """Improved diffusion model architecture proposed in the paper
8
+ "Analyzing and Improving the Training Dynamics of Diffusion Models"."""
9
+
10
+ import numpy as np
11
+ import torch
12
+
13
+ #----------------------------------------------------------------------------
14
+ # Variant of constant() that inherits dtype and device from the given
15
+ # reference tensor by default.
16
+
17
+ _constant_cache = dict()
18
+
19
+
20
+ def constant(value, shape=None, dtype=None, device=None, memory_format=None):
21
+ value = np.asarray(value)
22
+ if shape is not None:
23
+ shape = tuple(shape)
24
+ if dtype is None:
25
+ dtype = torch.get_default_dtype()
26
+ if device is None:
27
+ device = torch.device('cpu')
28
+ if memory_format is None:
29
+ memory_format = torch.contiguous_format
30
+
31
+ key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
32
+ tensor = _constant_cache.get(key, None)
33
+ if tensor is None:
34
+ tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
35
+ if shape is not None:
36
+ tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
37
+ tensor = tensor.contiguous(memory_format=memory_format)
38
+ _constant_cache[key] = tensor
39
+ return tensor
40
+
41
+
42
+ def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
43
+ if dtype is None:
44
+ dtype = ref.dtype
45
+ if device is None:
46
+ device = ref.device
47
+ return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
48
+
49
+
50
+ #----------------------------------------------------------------------------
51
+ # Normalize given tensor to unit magnitude with respect to the given
52
+ # dimensions. Default = all dimensions except the first.
53
+
54
+
55
+ def normalize(x, dim=None, eps=1e-4):
56
+ if dim is None:
57
+ dim = list(range(1, x.ndim))
58
+ norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
59
+ norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
60
+ return x / norm.to(x.dtype)
61
+
62
+
63
+ class Normalize(torch.nn.Module):
64
+
65
+ def __init__(self, dim=None, eps=1e-4):
66
+ super().__init__()
67
+ self.dim = dim
68
+ self.eps = eps
69
+
70
+ def forward(self, x):
71
+ return normalize(x, dim=self.dim, eps=self.eps)
72
+
73
+
74
+ #----------------------------------------------------------------------------
75
+ # Upsample or downsample the given tensor with the given filter,
76
+ # or keep it as is.
77
+
78
+
79
+ def resample(x, f=[1, 1], mode='keep'):
80
+ if mode == 'keep':
81
+ return x
82
+ f = np.float32(f)
83
+ assert f.ndim == 1 and len(f) % 2 == 0
84
+ pad = (len(f) - 1) // 2
85
+ f = f / f.sum()
86
+ f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
87
+ f = const_like(x, f)
88
+ c = x.shape[1]
89
+ if mode == 'down':
90
+ return torch.nn.functional.conv2d(x,
91
+ f.tile([c, 1, 1, 1]),
92
+ groups=c,
93
+ stride=2,
94
+ padding=(pad, ))
95
+ assert mode == 'up'
96
+ return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
97
+ groups=c,
98
+ stride=2,
99
+ padding=(pad, ))
100
+
101
+
102
+ #----------------------------------------------------------------------------
103
+ # Magnitude-preserving SiLU (Equation 81).
104
+
105
+
106
+ def mp_silu(x):
107
+ return torch.nn.functional.silu(x) / 0.596
108
+
109
+
110
+ class MPSiLU(torch.nn.Module):
111
+
112
+ def forward(self, x):
113
+ return mp_silu(x)
114
+
115
+
116
+ #----------------------------------------------------------------------------
117
+ # Magnitude-preserving sum (Equation 88).
118
+
119
+
120
+ def mp_sum(a, b, t=0.5):
121
+ return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
122
+
123
+
124
+ #----------------------------------------------------------------------------
125
+ # Magnitude-preserving concatenation (Equation 103).
126
+
127
+
128
+ def mp_cat(a, b, dim=1, t=0.5):
129
+ Na = a.shape[dim]
130
+ Nb = b.shape[dim]
131
+ C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
132
+ wa = C / np.sqrt(Na) * (1 - t)
133
+ wb = C / np.sqrt(Nb) * t
134
+ return torch.cat([wa * a, wb * b], dim=dim)
135
+
136
+
137
+ #----------------------------------------------------------------------------
138
+ # Magnitude-preserving convolution or fully-connected layer (Equation 47)
139
+ # with force weight normalization (Equation 66).
140
+
141
+
142
+ class MPConv1D(torch.nn.Module):
143
+
144
+ def __init__(self, in_channels, out_channels, kernel_size):
145
+ super().__init__()
146
+ self.out_channels = out_channels
147
+ self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
148
+
149
+ self.weight_norm_removed = False
150
+
151
+ def forward(self, x, gain=1):
152
+ assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
153
+
154
+ w = self.weight * gain
155
+ if w.ndim == 2:
156
+ return x @ w.t()
157
+ assert w.ndim == 3
158
+ return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
159
+
160
+ def remove_weight_norm(self):
161
+ w = self.weight.to(torch.float32)
162
+ w = normalize(w) # traditional weight normalization
163
+ w = w / np.sqrt(w[0].numel())
164
+ w = w.to(self.weight.dtype)
165
+ self.weight.data.copy_(w)
166
+
167
+ self.weight_norm_removed = True
168
+ return self
mmaudio/ext/autoencoder/vae.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from mmaudio.ext.autoencoder.edm2_utils import MPConv1D
8
+ from mmaudio.ext.autoencoder.vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
9
+ Upsample1D, nonlinearity)
10
+ from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
11
+
12
+ log = logging.getLogger()
13
+
14
+ DATA_MEAN_80D = [
15
+ -1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
16
+ -1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
17
+ -1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
18
+ -1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
19
+ -1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
20
+ -1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
21
+ -2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
22
+ -2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
23
+ ]
24
+
25
+ DATA_STD_80D = [
26
+ 1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
27
+ 0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
28
+ 0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
29
+ 0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
30
+ 0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
31
+ 0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
32
+ 1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
33
+ ]
34
+
35
+ DATA_MEAN_128D = [
36
+ -3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
37
+ -2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
38
+ -2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
39
+ -3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
40
+ -3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
41
+ -3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
42
+ -3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
43
+ -4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
44
+ -4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
45
+ -5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
46
+ -6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
47
+ -7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
48
+ -9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
49
+ ]
50
+
51
+ DATA_STD_128D = [
52
+ 2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
53
+ 2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
54
+ 2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
55
+ 2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
56
+ 2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
57
+ 2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
58
+ 2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
59
+ 2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
60
+ 2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
61
+ 2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
62
+ 2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
63
+ ]
64
+
65
+
66
+ class VAE(nn.Module):
67
+
68
+ def __init__(
69
+ self,
70
+ *,
71
+ data_dim: int,
72
+ embed_dim: int,
73
+ hidden_dim: int,
74
+ ):
75
+ super().__init__()
76
+
77
+ if data_dim == 80:
78
+ self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
79
+ self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
80
+ elif data_dim == 128:
81
+ self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
82
+ self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
83
+
84
+ self.data_mean = self.data_mean.view(1, -1, 1)
85
+ self.data_std = self.data_std.view(1, -1, 1)
86
+
87
+ self.encoder = Encoder1D(
88
+ dim=hidden_dim,
89
+ ch_mult=(1, 2, 4),
90
+ num_res_blocks=2,
91
+ attn_layers=[3],
92
+ down_layers=[0],
93
+ in_dim=data_dim,
94
+ embed_dim=embed_dim,
95
+ )
96
+ self.decoder = Decoder1D(
97
+ dim=hidden_dim,
98
+ ch_mult=(1, 2, 4),
99
+ num_res_blocks=2,
100
+ attn_layers=[3],
101
+ down_layers=[0],
102
+ in_dim=data_dim,
103
+ out_dim=data_dim,
104
+ embed_dim=embed_dim,
105
+ )
106
+
107
+ self.embed_dim = embed_dim
108
+ # self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
109
+ # self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
110
+
111
+ self.initialize_weights()
112
+
113
+ def initialize_weights(self):
114
+ pass
115
+
116
+ def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
117
+ if normalize:
118
+ x = self.normalize(x)
119
+ moments = self.encoder(x)
120
+ posterior = DiagonalGaussianDistribution(moments)
121
+ return posterior
122
+
123
+ def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
124
+ dec = self.decoder(z)
125
+ if unnormalize:
126
+ dec = self.unnormalize(dec)
127
+ return dec
128
+
129
+ def normalize(self, x: torch.Tensor) -> torch.Tensor:
130
+ return (x - self.data_mean) / self.data_std
131
+
132
+ def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
133
+ return x * self.data_std + self.data_mean
134
+
135
+ def forward(
136
+ self,
137
+ x: torch.Tensor,
138
+ sample_posterior: bool = True,
139
+ rng: Optional[torch.Generator] = None,
140
+ normalize: bool = True,
141
+ unnormalize: bool = True,
142
+ ) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
143
+
144
+ posterior = self.encode(x, normalize=normalize)
145
+ if sample_posterior:
146
+ z = posterior.sample(rng)
147
+ else:
148
+ z = posterior.mode()
149
+ dec = self.decode(z, unnormalize=unnormalize)
150
+ return dec, posterior
151
+
152
+ def load_weights(self, src_dict) -> None:
153
+ self.load_state_dict(src_dict, strict=True)
154
+
155
+ @property
156
+ def device(self) -> torch.device:
157
+ return next(self.parameters()).device
158
+
159
+ def get_last_layer(self):
160
+ return self.decoder.conv_out.weight
161
+
162
+ def remove_weight_norm(self):
163
+ for name, m in self.named_modules():
164
+ if isinstance(m, MPConv1D):
165
+ m.remove_weight_norm()
166
+ log.debug(f"Removed weight norm from {name}")
167
+ return self
168
+
169
+
170
+ class Encoder1D(nn.Module):
171
+
172
+ def __init__(self,
173
+ *,
174
+ dim: int,
175
+ ch_mult: tuple[int] = (1, 2, 4, 8),
176
+ num_res_blocks: int,
177
+ attn_layers: list[int] = [],
178
+ down_layers: list[int] = [],
179
+ resamp_with_conv: bool = True,
180
+ in_dim: int,
181
+ embed_dim: int,
182
+ double_z: bool = True,
183
+ kernel_size: int = 3,
184
+ clip_act: float = 256.0):
185
+ super().__init__()
186
+ self.dim = dim
187
+ self.num_layers = len(ch_mult)
188
+ self.num_res_blocks = num_res_blocks
189
+ self.in_channels = in_dim
190
+ self.clip_act = clip_act
191
+ self.down_layers = down_layers
192
+ self.attn_layers = attn_layers
193
+ self.conv_in = MPConv1D(in_dim, self.dim, kernel_size=kernel_size)
194
+
195
+ in_ch_mult = (1, ) + tuple(ch_mult)
196
+ self.in_ch_mult = in_ch_mult
197
+ # downsampling
198
+ self.down = nn.ModuleList()
199
+ for i_level in range(self.num_layers):
200
+ block = nn.ModuleList()
201
+ attn = nn.ModuleList()
202
+ block_in = dim * in_ch_mult[i_level]
203
+ block_out = dim * ch_mult[i_level]
204
+ for i_block in range(self.num_res_blocks):
205
+ block.append(
206
+ ResnetBlock1D(in_dim=block_in,
207
+ out_dim=block_out,
208
+ kernel_size=kernel_size,
209
+ use_norm=True))
210
+ block_in = block_out
211
+ if i_level in attn_layers:
212
+ attn.append(AttnBlock1D(block_in))
213
+ down = nn.Module()
214
+ down.block = block
215
+ down.attn = attn
216
+ if i_level in down_layers:
217
+ down.downsample = Downsample1D(block_in, resamp_with_conv)
218
+ self.down.append(down)
219
+
220
+ # middle
221
+ self.mid = nn.Module()
222
+ self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
223
+ out_dim=block_in,
224
+ kernel_size=kernel_size,
225
+ use_norm=True)
226
+ self.mid.attn_1 = AttnBlock1D(block_in)
227
+ self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
228
+ out_dim=block_in,
229
+ kernel_size=kernel_size,
230
+ use_norm=True)
231
+
232
+ # end
233
+ self.conv_out = MPConv1D(block_in,
234
+ 2 * embed_dim if double_z else embed_dim,
235
+ kernel_size=kernel_size)
236
+
237
+ self.learnable_gain = nn.Parameter(torch.zeros([]))
238
+
239
+ def forward(self, x):
240
+
241
+ # downsampling
242
+ hs = [self.conv_in(x)]
243
+ for i_level in range(self.num_layers):
244
+ for i_block in range(self.num_res_blocks):
245
+ h = self.down[i_level].block[i_block](hs[-1])
246
+ if len(self.down[i_level].attn) > 0:
247
+ h = self.down[i_level].attn[i_block](h)
248
+ h = h.clamp(-self.clip_act, self.clip_act)
249
+ hs.append(h)
250
+ if i_level in self.down_layers:
251
+ hs.append(self.down[i_level].downsample(hs[-1]))
252
+
253
+ # middle
254
+ h = hs[-1]
255
+ h = self.mid.block_1(h)
256
+ h = self.mid.attn_1(h)
257
+ h = self.mid.block_2(h)
258
+ h = h.clamp(-self.clip_act, self.clip_act)
259
+
260
+ # end
261
+ h = nonlinearity(h)
262
+ h = self.conv_out(h, gain=(self.learnable_gain + 1))
263
+ return h
264
+
265
+
266
+ class Decoder1D(nn.Module):
267
+
268
+ def __init__(self,
269
+ *,
270
+ dim: int,
271
+ out_dim: int,
272
+ ch_mult: tuple[int] = (1, 2, 4, 8),
273
+ num_res_blocks: int,
274
+ attn_layers: list[int] = [],
275
+ down_layers: list[int] = [],
276
+ kernel_size: int = 3,
277
+ resamp_with_conv: bool = True,
278
+ in_dim: int,
279
+ embed_dim: int,
280
+ clip_act: float = 256.0):
281
+ super().__init__()
282
+ self.ch = dim
283
+ self.num_layers = len(ch_mult)
284
+ self.num_res_blocks = num_res_blocks
285
+ self.in_channels = in_dim
286
+ self.clip_act = clip_act
287
+ self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
288
+
289
+ # compute in_ch_mult, block_in and curr_res at lowest res
290
+ block_in = dim * ch_mult[self.num_layers - 1]
291
+
292
+ # z to block_in
293
+ self.conv_in = MPConv1D(embed_dim, block_in, kernel_size=kernel_size)
294
+
295
+ # middle
296
+ self.mid = nn.Module()
297
+ self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
298
+ self.mid.attn_1 = AttnBlock1D(block_in)
299
+ self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
300
+
301
+ # upsampling
302
+ self.up = nn.ModuleList()
303
+ for i_level in reversed(range(self.num_layers)):
304
+ block = nn.ModuleList()
305
+ attn = nn.ModuleList()
306
+ block_out = dim * ch_mult[i_level]
307
+ for i_block in range(self.num_res_blocks + 1):
308
+ block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
309
+ block_in = block_out
310
+ if i_level in attn_layers:
311
+ attn.append(AttnBlock1D(block_in))
312
+ up = nn.Module()
313
+ up.block = block
314
+ up.attn = attn
315
+ if i_level in self.down_layers:
316
+ up.upsample = Upsample1D(block_in, resamp_with_conv)
317
+ self.up.insert(0, up) # prepend to get consistent order
318
+
319
+ # end
320
+ self.conv_out = MPConv1D(block_in, out_dim, kernel_size=kernel_size)
321
+ self.learnable_gain = nn.Parameter(torch.zeros([]))
322
+
323
+ def forward(self, z):
324
+ # z to block_in
325
+ h = self.conv_in(z)
326
+
327
+ # middle
328
+ h = self.mid.block_1(h)
329
+ h = self.mid.attn_1(h)
330
+ h = self.mid.block_2(h)
331
+ h = h.clamp(-self.clip_act, self.clip_act)
332
+
333
+ # upsampling
334
+ for i_level in reversed(range(self.num_layers)):
335
+ for i_block in range(self.num_res_blocks + 1):
336
+ h = self.up[i_level].block[i_block](h)
337
+ if len(self.up[i_level].attn) > 0:
338
+ h = self.up[i_level].attn[i_block](h)
339
+ h = h.clamp(-self.clip_act, self.clip_act)
340
+ if i_level in self.down_layers:
341
+ h = self.up[i_level].upsample(h)
342
+
343
+ h = nonlinearity(h)
344
+ h = self.conv_out(h, gain=(self.learnable_gain + 1))
345
+ return h
346
+
347
+
348
+ def VAE_16k(**kwargs) -> VAE:
349
+ return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
350
+
351
+
352
+ def VAE_44k(**kwargs) -> VAE:
353
+ return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
354
+
355
+
356
+ def get_my_vae(name: str, **kwargs) -> VAE:
357
+ if name == '16k':
358
+ return VAE_16k(**kwargs)
359
+ if name == '44k':
360
+ return VAE_44k(**kwargs)
361
+ raise ValueError(f'Unknown model: {name}')
362
+
363
+
364
+ if __name__ == '__main__':
365
+ network = get_my_vae('standard')
366
+
367
+ # print the number of parameters in terms of millions
368
+ num_params = sum(p.numel() for p in network.parameters()) / 1e6
369
+ print(f'Number of parameters: {num_params:.2f}M')
mmaudio/ext/autoencoder/vae_modules.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from einops import rearrange
5
+
6
+ from mmaudio.ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize)
7
+
8
+
9
+ def nonlinearity(x):
10
+ # swish
11
+ return mp_silu(x)
12
+
13
+
14
+ class ResnetBlock1D(nn.Module):
15
+
16
+ def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
17
+ super().__init__()
18
+ self.in_dim = in_dim
19
+ out_dim = in_dim if out_dim is None else out_dim
20
+ self.out_dim = out_dim
21
+ self.use_conv_shortcut = conv_shortcut
22
+ self.use_norm = use_norm
23
+
24
+ self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
25
+ self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size)
26
+ if self.in_dim != self.out_dim:
27
+ if self.use_conv_shortcut:
28
+ self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
29
+ else:
30
+ self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1)
31
+
32
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
33
+
34
+ # pixel norm
35
+ if self.use_norm:
36
+ x = normalize(x, dim=1)
37
+
38
+ h = x
39
+ h = nonlinearity(h)
40
+ h = self.conv1(h)
41
+
42
+ h = nonlinearity(h)
43
+ h = self.conv2(h)
44
+
45
+ if self.in_dim != self.out_dim:
46
+ if self.use_conv_shortcut:
47
+ x = self.conv_shortcut(x)
48
+ else:
49
+ x = self.nin_shortcut(x)
50
+
51
+ return mp_sum(x, h, t=0.3)
52
+
53
+
54
+ class AttnBlock1D(nn.Module):
55
+
56
+ def __init__(self, in_channels, num_heads=1):
57
+ super().__init__()
58
+ self.in_channels = in_channels
59
+
60
+ self.num_heads = num_heads
61
+ self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1)
62
+ self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1)
63
+
64
+ def forward(self, x):
65
+ h = x
66
+ y = self.qkv(h)
67
+ y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1])
68
+ q, k, v = normalize(y, dim=2).unbind(3)
69
+
70
+ q = rearrange(q, 'b h c l -> b h l c')
71
+ k = rearrange(k, 'b h c l -> b h l c')
72
+ v = rearrange(v, 'b h c l -> b h l c')
73
+
74
+ h = F.scaled_dot_product_attention(q, k, v)
75
+ h = rearrange(h, 'b h l c -> b (h c) l')
76
+
77
+ h = self.proj_out(h)
78
+
79
+ return mp_sum(x, h, t=0.3)
80
+
81
+
82
+ class Upsample1D(nn.Module):
83
+
84
+ def __init__(self, in_channels, with_conv):
85
+ super().__init__()
86
+ self.with_conv = with_conv
87
+ if self.with_conv:
88
+ self.conv = MPConv1D(in_channels, in_channels, kernel_size=3)
89
+
90
+ def forward(self, x):
91
+ x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
92
+ if self.with_conv:
93
+ x = self.conv(x)
94
+ return x
95
+
96
+
97
+ class Downsample1D(nn.Module):
98
+
99
+ def __init__(self, in_channels, with_conv):
100
+ super().__init__()
101
+ self.with_conv = with_conv
102
+ if self.with_conv:
103
+ # no asymmetric padding in torch conv, must do it ourselves
104
+ self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1)
105
+ self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1)
106
+
107
+ def forward(self, x):
108
+
109
+ if self.with_conv:
110
+ x = self.conv1(x)
111
+
112
+ x = F.avg_pool1d(x, kernel_size=2, stride=2)
113
+
114
+ if self.with_conv:
115
+ x = self.conv2(x)
116
+
117
+ return x
mmaudio/ext/bigvgan/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 NVIDIA CORPORATION.
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
mmaudio/ext/bigvgan/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .bigvgan import BigVGAN
mmaudio/ext/bigvgan/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (209 Bytes). View file
 
mmaudio/ext/bigvgan/__pycache__/activations.cpython-310.pyc ADDED
Binary file (4.04 kB). View file
 
mmaudio/ext/bigvgan/__pycache__/bigvgan.cpython-310.pyc ADDED
Binary file (1.43 kB). View file
 
mmaudio/ext/bigvgan/__pycache__/models.cpython-310.pyc ADDED
Binary file (5.78 kB). View file
 
mmaudio/ext/bigvgan/__pycache__/utils.cpython-310.pyc ADDED
Binary file (1.16 kB). View file
 
mmaudio/ext/bigvgan/activations.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ import torch
5
+ from torch import nn, sin, pow
6
+ from torch.nn import Parameter
7
+
8
+
9
+ class Snake(nn.Module):
10
+ '''
11
+ Implementation of a sine-based periodic activation function
12
+ Shape:
13
+ - Input: (B, C, T)
14
+ - Output: (B, C, T), same shape as the input
15
+ Parameters:
16
+ - alpha - trainable parameter
17
+ References:
18
+ - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
19
+ https://arxiv.org/abs/2006.08195
20
+ Examples:
21
+ >>> a1 = snake(256)
22
+ >>> x = torch.randn(256)
23
+ >>> x = a1(x)
24
+ '''
25
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
26
+ '''
27
+ Initialization.
28
+ INPUT:
29
+ - in_features: shape of the input
30
+ - alpha: trainable parameter
31
+ alpha is initialized to 1 by default, higher values = higher-frequency.
32
+ alpha will be trained along with the rest of your model.
33
+ '''
34
+ super(Snake, self).__init__()
35
+ self.in_features = in_features
36
+
37
+ # initialize alpha
38
+ self.alpha_logscale = alpha_logscale
39
+ if self.alpha_logscale: # log scale alphas initialized to zeros
40
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
41
+ else: # linear scale alphas initialized to ones
42
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
43
+
44
+ self.alpha.requires_grad = alpha_trainable
45
+
46
+ self.no_div_by_zero = 0.000000001
47
+
48
+ def forward(self, x):
49
+ '''
50
+ Forward pass of the function.
51
+ Applies the function to the input elementwise.
52
+ Snake ∶= x + 1/a * sin^2 (xa)
53
+ '''
54
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
55
+ if self.alpha_logscale:
56
+ alpha = torch.exp(alpha)
57
+ x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
58
+
59
+ return x
60
+
61
+
62
+ class SnakeBeta(nn.Module):
63
+ '''
64
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
65
+ Shape:
66
+ - Input: (B, C, T)
67
+ - Output: (B, C, T), same shape as the input
68
+ Parameters:
69
+ - alpha - trainable parameter that controls frequency
70
+ - beta - trainable parameter that controls magnitude
71
+ References:
72
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
73
+ https://arxiv.org/abs/2006.08195
74
+ Examples:
75
+ >>> a1 = snakebeta(256)
76
+ >>> x = torch.randn(256)
77
+ >>> x = a1(x)
78
+ '''
79
+ def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
80
+ '''
81
+ Initialization.
82
+ INPUT:
83
+ - in_features: shape of the input
84
+ - alpha - trainable parameter that controls frequency
85
+ - beta - trainable parameter that controls magnitude
86
+ alpha is initialized to 1 by default, higher values = higher-frequency.
87
+ beta is initialized to 1 by default, higher values = higher-magnitude.
88
+ alpha will be trained along with the rest of your model.
89
+ '''
90
+ super(SnakeBeta, self).__init__()
91
+ self.in_features = in_features
92
+
93
+ # initialize alpha
94
+ self.alpha_logscale = alpha_logscale
95
+ if self.alpha_logscale: # log scale alphas initialized to zeros
96
+ self.alpha = Parameter(torch.zeros(in_features) * alpha)
97
+ self.beta = Parameter(torch.zeros(in_features) * alpha)
98
+ else: # linear scale alphas initialized to ones
99
+ self.alpha = Parameter(torch.ones(in_features) * alpha)
100
+ self.beta = Parameter(torch.ones(in_features) * alpha)
101
+
102
+ self.alpha.requires_grad = alpha_trainable
103
+ self.beta.requires_grad = alpha_trainable
104
+
105
+ self.no_div_by_zero = 0.000000001
106
+
107
+ def forward(self, x):
108
+ '''
109
+ Forward pass of the function.
110
+ Applies the function to the input elementwise.
111
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
112
+ '''
113
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
114
+ beta = self.beta.unsqueeze(0).unsqueeze(-1)
115
+ if self.alpha_logscale:
116
+ alpha = torch.exp(alpha)
117
+ beta = torch.exp(beta)
118
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
119
+
120
+ return x
mmaudio/ext/bigvgan/alias_free_torch/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
2
+ # LICENSE is in incl_licenses directory.
3
+
4
+ from .filter import *
5
+ from .resample import *
6
+ from .act import *
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (245 Bytes). View file
 
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/act.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/filter.cpython-310.pyc ADDED
Binary file (2.66 kB). View file
 
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/resample.cpython-310.pyc ADDED
Binary file (1.93 kB). View file