cloud
commited on
Commit
·
e11471f
1
Parent(s):
9566351
Upload all project files and fine-tuned model
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +274 -0
- ext_weights/synchformer_state_dict.pth +3 -0
- ext_weights/v1-44.pth +3 -0
- mmaudio/__init__.py +0 -0
- mmaudio/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/__pycache__/eval_utils.cpython-310.pyc +0 -0
- mmaudio/data/__init__.py +0 -0
- mmaudio/data/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/data/__pycache__/av_utils.cpython-310.pyc +0 -0
- mmaudio/data/av_utils.py +162 -0
- mmaudio/data/data_setup.py +174 -0
- mmaudio/data/eval/__init__.py +0 -0
- mmaudio/data/eval/audiocaps.py +39 -0
- mmaudio/data/eval/moviegen.py +131 -0
- mmaudio/data/eval/video_dataset.py +197 -0
- mmaudio/data/extracted_audio.py +88 -0
- mmaudio/data/extracted_vgg.py +101 -0
- mmaudio/data/extraction/__init__.py +0 -0
- mmaudio/data/extraction/vgg_sound.py +193 -0
- mmaudio/data/extraction/wav_dataset.py +132 -0
- mmaudio/data/mm_dataset.py +45 -0
- mmaudio/data/utils.py +148 -0
- mmaudio/eval_utils.py +255 -0
- mmaudio/ext/__init__.py +1 -0
- mmaudio/ext/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/ext/__pycache__/mel_converter.cpython-310.pyc +0 -0
- mmaudio/ext/__pycache__/rotary_embeddings.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/__init__.py +1 -0
- mmaudio/ext/autoencoder/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/__pycache__/autoencoder.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/__pycache__/edm2_utils.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/__pycache__/vae.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/__pycache__/vae_modules.cpython-310.pyc +0 -0
- mmaudio/ext/autoencoder/autoencoder.py +52 -0
- mmaudio/ext/autoencoder/edm2_utils.py +168 -0
- mmaudio/ext/autoencoder/vae.py +369 -0
- mmaudio/ext/autoencoder/vae_modules.py +117 -0
- mmaudio/ext/bigvgan/LICENSE +21 -0
- mmaudio/ext/bigvgan/__init__.py +1 -0
- mmaudio/ext/bigvgan/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/__pycache__/activations.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/__pycache__/bigvgan.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/__pycache__/models.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/__pycache__/utils.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/activations.py +120 -0
- mmaudio/ext/bigvgan/alias_free_torch/__init__.py +6 -0
- mmaudio/ext/bigvgan/alias_free_torch/__pycache__/__init__.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/alias_free_torch/__pycache__/act.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/alias_free_torch/__pycache__/filter.cpython-310.pyc +0 -0
- mmaudio/ext/bigvgan/alias_free_torch/__pycache__/resample.cpython-310.pyc +0 -0
app.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 4 |
+
logging.getLogger("requests").setLevel(logging.WARNING)
|
| 5 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
| 6 |
+
|
| 7 |
+
import gc
|
| 8 |
+
from argparse import ArgumentParser
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from fractions import Fraction
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import torch
|
| 15 |
+
import torchaudio
|
| 16 |
+
import torch.hub
|
| 17 |
+
|
| 18 |
+
from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image,
|
| 19 |
+
load_video, make_video, setup_eval_logging)
|
| 20 |
+
from mmaudio.model.flow_matching import FlowMatching
|
| 21 |
+
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 22 |
+
from mmaudio.model.sequence_config import SequenceConfig
|
| 23 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 24 |
+
|
| 25 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 27 |
+
|
| 28 |
+
log = logging.getLogger()
|
| 29 |
+
|
| 30 |
+
device = 'cpu'
|
| 31 |
+
if torch.cuda.is_available():
|
| 32 |
+
device = 'cuda'
|
| 33 |
+
elif torch.backends.mps.is_available():
|
| 34 |
+
device = 'mps'
|
| 35 |
+
else:
|
| 36 |
+
log.warning('CUDA/MPS are not available, running on CPU')
|
| 37 |
+
dtype = torch.float32
|
| 38 |
+
|
| 39 |
+
MY_CHECKPOINT_PATH = './nsfw_gold_8.5k_final.pth'
|
| 40 |
+
MY_MODEL_NAME = 'large_44k'
|
| 41 |
+
|
| 42 |
+
EXT_WEIGHTS_DIR = Path('./ext_weights')
|
| 43 |
+
EXT_WEIGHTS_DIR.mkdir(exist_ok=True)
|
| 44 |
+
|
| 45 |
+
VAE_URL = "https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth"
|
| 46 |
+
SYNCHFORMER_URL = "https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth"
|
| 47 |
+
|
| 48 |
+
def download_dependency(url: str, local_path: Path):
|
| 49 |
+
if not local_path.exists():
|
| 50 |
+
log.info(f"Downloading dependency from {url} to {local_path}...")
|
| 51 |
+
torch.hub.download_url_to_file(url, str(local_path), progress=True)
|
| 52 |
+
log.info(f"Download complete.")
|
| 53 |
+
|
| 54 |
+
log.info("Checking for dependencies (VAE and Synchformer)...")
|
| 55 |
+
VAE_PATH = EXT_WEIGHTS_DIR / 'v1-44.pth'
|
| 56 |
+
SYNCHFORMER_PATH = EXT_WEIGHTS_DIR / 'synchformer_state_dict.pth'
|
| 57 |
+
|
| 58 |
+
download_dependency(VAE_URL, VAE_PATH)
|
| 59 |
+
download_dependency(SYNCHFORMER_URL, SYNCHFORMER_PATH)
|
| 60 |
+
|
| 61 |
+
model_cfg_for_params: ModelConfig = all_model_cfg['large_44k_v2']
|
| 62 |
+
|
| 63 |
+
output_dir = Path('./output/gradio')
|
| 64 |
+
setup_eval_logging()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
| 68 |
+
seq_cfg = model_cfg_for_params.seq_cfg
|
| 69 |
+
|
| 70 |
+
net: MMAudio = get_my_mmaudio(MY_MODEL_NAME).to(device, dtype).eval()
|
| 71 |
+
|
| 72 |
+
log.info(f'Loading YOUR fine-tuned weights from {MY_CHECKPOINT_PATH}')
|
| 73 |
+
if not Path(MY_CHECKPOINT_PATH).exists():
|
| 74 |
+
raise FileNotFoundError(f"FATAL: Your model file was not found at {MY_CHECKPOINT_PATH}")
|
| 75 |
+
net.load_weights(torch.load(MY_CHECKPOINT_PATH, map_location=device, weights_only=True))
|
| 76 |
+
log.info(f'Successfully loaded your weights!')
|
| 77 |
+
|
| 78 |
+
feature_utils = FeaturesUtils(tod_vae_ckpt=VAE_PATH,
|
| 79 |
+
synchformer_ckpt=SYNCHFORMER_PATH,
|
| 80 |
+
enable_conditions=True,
|
| 81 |
+
mode=model_cfg_for_params.mode,
|
| 82 |
+
bigvgan_vocoder_ckpt=None,
|
| 83 |
+
need_vae_encoder=False)
|
| 84 |
+
feature_utils = feature_utils.to(device, dtype).eval()
|
| 85 |
+
|
| 86 |
+
return net, feature_utils, seq_cfg
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
net, feature_utils, seq_cfg = get_model()
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@torch.inference_mode()
|
| 93 |
+
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
| 94 |
+
cfg_strength: float, duration: float):
|
| 95 |
+
|
| 96 |
+
rng = torch.Generator(device=device)
|
| 97 |
+
if seed >= 0:
|
| 98 |
+
rng.manual_seed(seed)
|
| 99 |
+
else:
|
| 100 |
+
rng.seed()
|
| 101 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 102 |
+
|
| 103 |
+
video_info = load_video(video, duration)
|
| 104 |
+
clip_frames = video_info.clip_frames
|
| 105 |
+
sync_frames = video_info.sync_frames
|
| 106 |
+
duration = video_info.duration_sec
|
| 107 |
+
clip_frames = clip_frames.unsqueeze(0)
|
| 108 |
+
sync_frames = sync_frames.unsqueeze(0)
|
| 109 |
+
seq_cfg.duration = duration
|
| 110 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
| 111 |
+
|
| 112 |
+
audios = generate(clip_frames,
|
| 113 |
+
sync_frames, [prompt],
|
| 114 |
+
negative_text=[negative_prompt],
|
| 115 |
+
feature_utils=feature_utils,
|
| 116 |
+
net=net,
|
| 117 |
+
fm=fm,
|
| 118 |
+
rng=rng,
|
| 119 |
+
cfg_strength=cfg_strength)
|
| 120 |
+
audio = audios.float().cpu()[0]
|
| 121 |
+
|
| 122 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 123 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
| 124 |
+
video_save_path = output_dir / f'{current_time_string}.mp4'
|
| 125 |
+
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
| 126 |
+
gc.collect()
|
| 127 |
+
return video_save_path
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@torch.inference_mode()
|
| 131 |
+
def image_to_audio(image: gr.Image, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
| 132 |
+
cfg_strength: float, duration: float):
|
| 133 |
+
|
| 134 |
+
rng = torch.Generator(device=device)
|
| 135 |
+
if seed >= 0:
|
| 136 |
+
rng.manual_seed(seed)
|
| 137 |
+
else:
|
| 138 |
+
rng.seed()
|
| 139 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 140 |
+
|
| 141 |
+
image_info = load_image(image)
|
| 142 |
+
clip_frames = image_info.clip_frames
|
| 143 |
+
sync_frames = image_info.sync_frames
|
| 144 |
+
clip_frames = clip_frames.unsqueeze(0)
|
| 145 |
+
sync_frames = sync_frames.unsqueeze(0)
|
| 146 |
+
seq_cfg.duration = duration
|
| 147 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
| 148 |
+
|
| 149 |
+
audios = generate(clip_frames,
|
| 150 |
+
sync_frames, [prompt],
|
| 151 |
+
negative_text=[negative_prompt],
|
| 152 |
+
feature_utils=feature_utils,
|
| 153 |
+
net=net,
|
| 154 |
+
fm=fm,
|
| 155 |
+
rng=rng,
|
| 156 |
+
cfg_strength=cfg_strength,
|
| 157 |
+
image_input=True)
|
| 158 |
+
audio = audios.float().cpu()[0]
|
| 159 |
+
|
| 160 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 161 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
| 162 |
+
video_save_path = output_dir / f'{current_time_string}.mp4'
|
| 163 |
+
video_info = VideoInfo.from_image_info(image_info, duration, fps=Fraction(1))
|
| 164 |
+
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
| 165 |
+
gc.collect()
|
| 166 |
+
return video_save_path
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
@torch.inference_mode()
|
| 170 |
+
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
| 171 |
+
duration: float):
|
| 172 |
+
|
| 173 |
+
rng = torch.Generator(device=device)
|
| 174 |
+
if seed >= 0:
|
| 175 |
+
rng.manual_seed(seed)
|
| 176 |
+
else:
|
| 177 |
+
rng.seed()
|
| 178 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
| 179 |
+
|
| 180 |
+
clip_frames = sync_frames = None
|
| 181 |
+
seq_cfg.duration = duration
|
| 182 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
| 183 |
+
|
| 184 |
+
audios = generate(clip_frames,
|
| 185 |
+
sync_frames, [prompt],
|
| 186 |
+
negative_text=[negative_prompt],
|
| 187 |
+
feature_utils=feature_utils,
|
| 188 |
+
net=net,
|
| 189 |
+
fm=fm,
|
| 190 |
+
rng=rng,
|
| 191 |
+
cfg_strength=cfg_strength)
|
| 192 |
+
audio = audios.float().cpu()[0]
|
| 193 |
+
|
| 194 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 195 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
| 196 |
+
audio_save_path = output_dir / f'{current_time_string}.flac'
|
| 197 |
+
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
| 198 |
+
gc.collect()
|
| 199 |
+
return audio_save_path
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
video_to_audio_tab = gr.Interface(
|
| 203 |
+
fn=video_to_audio,
|
| 204 |
+
description="""
|
| 205 |
+
Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
|
| 206 |
+
Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a><br>
|
| 207 |
+
<br>
|
| 208 |
+
NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side). Doing so does not improve results.
|
| 209 |
+
""",
|
| 210 |
+
inputs=[
|
| 211 |
+
gr.Video(),
|
| 212 |
+
gr.Text(label='Prompt'),
|
| 213 |
+
gr.Text(label='Negative prompt', value='music'),
|
| 214 |
+
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
|
| 215 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
| 216 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
| 217 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
| 218 |
+
],
|
| 219 |
+
outputs='playable_video',
|
| 220 |
+
cache_examples=False,
|
| 221 |
+
title='MMAudio — Video-to-Audio Synthesis',
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
text_to_audio_tab = gr.Interface(
|
| 225 |
+
fn=text_to_audio,
|
| 226 |
+
description="""
|
| 227 |
+
Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
|
| 228 |
+
Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a>
|
| 229 |
+
""",
|
| 230 |
+
inputs=[
|
| 231 |
+
gr.Text(label='Prompt'),
|
| 232 |
+
gr.Text(label='Negative prompt'),
|
| 233 |
+
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
|
| 234 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
| 235 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
| 236 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
| 237 |
+
],
|
| 238 |
+
outputs='audio',
|
| 239 |
+
cache_examples=False,
|
| 240 |
+
title='MMAudio — Text-to-Audio Synthesis',
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
image_to_audio_tab = gr.Interface(
|
| 244 |
+
fn=image_to_audio,
|
| 245 |
+
description="""
|
| 246 |
+
Fine-tuned model: <b>cloud19/NSFW_MMaudio</b><br>
|
| 247 |
+
Based on the original project: <a href="https://github.com/hkchengrex/MMAudio">https://github.com/hkchengrex/MMAudio</a><br>
|
| 248 |
+
<br>
|
| 249 |
+
NOTE: It takes longer to process high-resolution images (>384 px on the shorter side). Doing so does not improve results.
|
| 250 |
+
""",
|
| 251 |
+
inputs=[
|
| 252 |
+
gr.Image(type='filepath'),
|
| 253 |
+
gr.Text(label='Prompt'),
|
| 254 |
+
gr.Text(label='Negative prompt'),
|
| 255 |
+
gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
|
| 256 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
| 257 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
| 258 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
| 259 |
+
],
|
| 260 |
+
outputs='playable_video',
|
| 261 |
+
cache_examples=False,
|
| 262 |
+
title='MMAudio — Image-to-Audio Synthesis (experimental)',
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
parser = ArgumentParser()
|
| 267 |
+
parser.add_argument('--port', type=int, default=7860)
|
| 268 |
+
parser.add_argument('--share', action='store_true', help='Create a public link')
|
| 269 |
+
args = parser.parse_args()
|
| 270 |
+
|
| 271 |
+
app = gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab, image_to_audio_tab],
|
| 272 |
+
['Video-to-Audio', 'Text-to-Audio', 'Image-to-Audio (experimental)'])
|
| 273 |
+
|
| 274 |
+
app.launch(server_name="0.0.0.0", server_port=args.port, share=args.share, allowed_paths=[output_dir])
|
ext_weights/synchformer_state_dict.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8aff082f2df5c3bc52759db0c865c7ee772ae6400b860d1b7e90413f2defb67c
|
| 3 |
+
size 950058171
|
ext_weights/v1-44.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab6cc15dc31947675f75c950c41f4dcfd0d6d1817555ac871f809ec388e4651a
|
| 3 |
+
size 1221942998
|
mmaudio/__init__.py
ADDED
|
File without changes
|
mmaudio/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (158 Bytes). View file
|
|
|
mmaudio/__pycache__/eval_utils.cpython-310.pyc
ADDED
|
Binary file (6.8 kB). View file
|
|
|
mmaudio/data/__init__.py
ADDED
|
File without changes
|
mmaudio/data/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (163 Bytes). View file
|
|
|
mmaudio/data/__pycache__/av_utils.cpython-310.pyc
ADDED
|
Binary file (4.86 kB). View file
|
|
|
mmaudio/data/av_utils.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from fractions import Fraction
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import av
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from av import AudioFrame
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class VideoInfo:
|
| 14 |
+
duration_sec: float
|
| 15 |
+
fps: Fraction
|
| 16 |
+
clip_frames: torch.Tensor
|
| 17 |
+
sync_frames: torch.Tensor
|
| 18 |
+
all_frames: Optional[list[np.ndarray]]
|
| 19 |
+
|
| 20 |
+
@property
|
| 21 |
+
def height(self):
|
| 22 |
+
return self.all_frames[0].shape[0]
|
| 23 |
+
|
| 24 |
+
@property
|
| 25 |
+
def width(self):
|
| 26 |
+
return self.all_frames[0].shape[1]
|
| 27 |
+
|
| 28 |
+
@classmethod
|
| 29 |
+
def from_image_info(cls, image_info: 'ImageInfo', duration_sec: float,
|
| 30 |
+
fps: Fraction) -> 'VideoInfo':
|
| 31 |
+
num_frames = int(duration_sec * fps)
|
| 32 |
+
all_frames = [image_info.original_frame] * num_frames
|
| 33 |
+
return cls(duration_sec=duration_sec,
|
| 34 |
+
fps=fps,
|
| 35 |
+
clip_frames=image_info.clip_frames,
|
| 36 |
+
sync_frames=image_info.sync_frames,
|
| 37 |
+
all_frames=all_frames)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class ImageInfo:
|
| 42 |
+
clip_frames: torch.Tensor
|
| 43 |
+
sync_frames: torch.Tensor
|
| 44 |
+
original_frame: Optional[np.ndarray]
|
| 45 |
+
|
| 46 |
+
@property
|
| 47 |
+
def height(self):
|
| 48 |
+
return self.original_frame.shape[0]
|
| 49 |
+
|
| 50 |
+
@property
|
| 51 |
+
def width(self):
|
| 52 |
+
return self.original_frame.shape[1]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def read_frames(video_path: Path, list_of_fps: list[float], start_sec: float, end_sec: float,
|
| 56 |
+
need_all_frames: bool) -> tuple[list[np.ndarray], list[np.ndarray], Fraction]:
|
| 57 |
+
output_frames = [[] for _ in list_of_fps]
|
| 58 |
+
next_frame_time_for_each_fps = [0.0 for _ in list_of_fps]
|
| 59 |
+
time_delta_for_each_fps = [1 / fps for fps in list_of_fps]
|
| 60 |
+
all_frames = []
|
| 61 |
+
|
| 62 |
+
# container = av.open(video_path)
|
| 63 |
+
with av.open(video_path) as container:
|
| 64 |
+
stream = container.streams.video[0]
|
| 65 |
+
fps = stream.guessed_rate
|
| 66 |
+
stream.thread_type = 'AUTO'
|
| 67 |
+
for packet in container.demux(stream):
|
| 68 |
+
for frame in packet.decode():
|
| 69 |
+
frame_time = frame.time
|
| 70 |
+
if frame_time < start_sec:
|
| 71 |
+
continue
|
| 72 |
+
if frame_time > end_sec:
|
| 73 |
+
break
|
| 74 |
+
|
| 75 |
+
frame_np = None
|
| 76 |
+
if need_all_frames:
|
| 77 |
+
frame_np = frame.to_ndarray(format='rgb24')
|
| 78 |
+
all_frames.append(frame_np)
|
| 79 |
+
|
| 80 |
+
for i, _ in enumerate(list_of_fps):
|
| 81 |
+
this_time = frame_time
|
| 82 |
+
while this_time >= next_frame_time_for_each_fps[i]:
|
| 83 |
+
if frame_np is None:
|
| 84 |
+
frame_np = frame.to_ndarray(format='rgb24')
|
| 85 |
+
|
| 86 |
+
output_frames[i].append(frame_np)
|
| 87 |
+
next_frame_time_for_each_fps[i] += time_delta_for_each_fps[i]
|
| 88 |
+
|
| 89 |
+
output_frames = [np.stack(frames) for frames in output_frames]
|
| 90 |
+
return output_frames, all_frames, fps
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def reencode_with_audio(video_info: VideoInfo, output_path: Path, audio: torch.Tensor,
|
| 94 |
+
sampling_rate: int):
|
| 95 |
+
container = av.open(output_path, 'w')
|
| 96 |
+
output_video_stream = container.add_stream('h264', video_info.fps)
|
| 97 |
+
output_video_stream.codec_context.bit_rate = 10 * 1e6 # 10 Mbps
|
| 98 |
+
output_video_stream.width = video_info.width
|
| 99 |
+
output_video_stream.height = video_info.height
|
| 100 |
+
output_video_stream.pix_fmt = 'yuv420p'
|
| 101 |
+
|
| 102 |
+
output_audio_stream = container.add_stream('aac', sampling_rate)
|
| 103 |
+
|
| 104 |
+
# encode video
|
| 105 |
+
for image in video_info.all_frames:
|
| 106 |
+
image = av.VideoFrame.from_ndarray(image)
|
| 107 |
+
packet = output_video_stream.encode(image)
|
| 108 |
+
container.mux(packet)
|
| 109 |
+
|
| 110 |
+
for packet in output_video_stream.encode():
|
| 111 |
+
container.mux(packet)
|
| 112 |
+
|
| 113 |
+
# convert float tensor audio to numpy array
|
| 114 |
+
audio_np = audio.numpy().astype(np.float32)
|
| 115 |
+
audio_frame = AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
|
| 116 |
+
audio_frame.sample_rate = sampling_rate
|
| 117 |
+
|
| 118 |
+
for packet in output_audio_stream.encode(audio_frame):
|
| 119 |
+
container.mux(packet)
|
| 120 |
+
|
| 121 |
+
for packet in output_audio_stream.encode():
|
| 122 |
+
container.mux(packet)
|
| 123 |
+
|
| 124 |
+
container.close()
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def remux_with_audio(video_path: Path, audio: torch.Tensor, output_path: Path, sampling_rate: int):
|
| 128 |
+
"""
|
| 129 |
+
NOTE: I don't think we can get the exact video duration right without re-encoding
|
| 130 |
+
so we are not using this but keeping it here for reference
|
| 131 |
+
"""
|
| 132 |
+
video = av.open(video_path)
|
| 133 |
+
output = av.open(output_path, 'w')
|
| 134 |
+
input_video_stream = video.streams.video[0]
|
| 135 |
+
output_video_stream = output.add_stream(template=input_video_stream)
|
| 136 |
+
output_audio_stream = output.add_stream('aac', sampling_rate)
|
| 137 |
+
|
| 138 |
+
duration_sec = audio.shape[-1] / sampling_rate
|
| 139 |
+
|
| 140 |
+
for packet in video.demux(input_video_stream):
|
| 141 |
+
# We need to skip the "flushing" packets that `demux` generates.
|
| 142 |
+
if packet.dts is None:
|
| 143 |
+
continue
|
| 144 |
+
# We need to assign the packet to the new stream.
|
| 145 |
+
packet.stream = output_video_stream
|
| 146 |
+
output.mux(packet)
|
| 147 |
+
|
| 148 |
+
# convert float tensor audio to numpy array
|
| 149 |
+
audio_np = audio.numpy().astype(np.float32)
|
| 150 |
+
audio_frame = av.AudioFrame.from_ndarray(audio_np, format='flt', layout='mono')
|
| 151 |
+
audio_frame.sample_rate = sampling_rate
|
| 152 |
+
|
| 153 |
+
for packet in output_audio_stream.encode(audio_frame):
|
| 154 |
+
output.mux(packet)
|
| 155 |
+
|
| 156 |
+
for packet in output_audio_stream.encode():
|
| 157 |
+
output.mux(packet)
|
| 158 |
+
|
| 159 |
+
video.close()
|
| 160 |
+
output.close()
|
| 161 |
+
|
| 162 |
+
output.close()
|
mmaudio/data/data_setup.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from omegaconf import DictConfig
|
| 7 |
+
from torch.utils.data import DataLoader, Dataset
|
| 8 |
+
from torch.utils.data.dataloader import default_collate
|
| 9 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 10 |
+
|
| 11 |
+
from mmaudio.data.eval.audiocaps import AudioCapsData
|
| 12 |
+
from mmaudio.data.eval.video_dataset import MovieGen, VGGSound
|
| 13 |
+
from mmaudio.data.extracted_audio import ExtractedAudio
|
| 14 |
+
from mmaudio.data.extracted_vgg import ExtractedVGG
|
| 15 |
+
from mmaudio.data.mm_dataset import MultiModalDataset
|
| 16 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 17 |
+
|
| 18 |
+
log = logging.getLogger()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Re-seed randomness every time we start a worker
|
| 22 |
+
def worker_init_fn(worker_id: int):
|
| 23 |
+
worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000
|
| 24 |
+
np.random.seed(worker_seed)
|
| 25 |
+
random.seed(worker_seed)
|
| 26 |
+
log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}')
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
|
| 30 |
+
dataset = ExtractedVGG(tsv_path=data_cfg.tsv,
|
| 31 |
+
data_dim=cfg.data_dim,
|
| 32 |
+
premade_mmap_dir=data_cfg.memmap_dir)
|
| 33 |
+
|
| 34 |
+
return dataset
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
|
| 38 |
+
dataset = ExtractedAudio(tsv_path=data_cfg.tsv,
|
| 39 |
+
data_dim=cfg.data_dim,
|
| 40 |
+
premade_mmap_dir=data_cfg.memmap_dir)
|
| 41 |
+
|
| 42 |
+
return dataset
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]:
|
| 46 |
+
if cfg.mini_train:
|
| 47 |
+
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
|
| 48 |
+
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
|
| 49 |
+
dataset = MultiModalDataset([vgg], [audiocaps])
|
| 50 |
+
if cfg.example_train:
|
| 51 |
+
video = load_vgg_data(cfg, cfg.data.Example_video)
|
| 52 |
+
audio = load_audio_data(cfg, cfg.data.Example_audio)
|
| 53 |
+
dataset = MultiModalDataset([video], [audio])
|
| 54 |
+
else:
|
| 55 |
+
# load the largest one first
|
| 56 |
+
freesound = load_audio_data(cfg, cfg.data.FreeSound)
|
| 57 |
+
vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG)
|
| 58 |
+
audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
|
| 59 |
+
audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL)
|
| 60 |
+
bbcsound = load_audio_data(cfg, cfg.data.BBCSound)
|
| 61 |
+
clotho = load_audio_data(cfg, cfg.data.Clotho)
|
| 62 |
+
dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate,
|
| 63 |
+
[audiocaps, audioset_sl, bbcsound, freesound, clotho])
|
| 64 |
+
|
| 65 |
+
batch_size = cfg.batch_size
|
| 66 |
+
num_workers = cfg.num_workers
|
| 67 |
+
pin_memory = cfg.pin_memory
|
| 68 |
+
sampler, loader = construct_loader(dataset,
|
| 69 |
+
batch_size,
|
| 70 |
+
num_workers,
|
| 71 |
+
shuffle=True,
|
| 72 |
+
drop_last=True,
|
| 73 |
+
pin_memory=pin_memory)
|
| 74 |
+
|
| 75 |
+
return dataset, sampler, loader
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def setup_test_datasets(cfg):
|
| 79 |
+
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test)
|
| 80 |
+
|
| 81 |
+
batch_size = cfg.batch_size
|
| 82 |
+
num_workers = cfg.num_workers
|
| 83 |
+
pin_memory = cfg.pin_memory
|
| 84 |
+
sampler, loader = construct_loader(dataset,
|
| 85 |
+
batch_size,
|
| 86 |
+
num_workers,
|
| 87 |
+
shuffle=False,
|
| 88 |
+
drop_last=False,
|
| 89 |
+
pin_memory=pin_memory)
|
| 90 |
+
|
| 91 |
+
return dataset, sampler, loader
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]:
|
| 95 |
+
if cfg.example_train:
|
| 96 |
+
dataset = load_vgg_data(cfg, cfg.data.Example_video)
|
| 97 |
+
else:
|
| 98 |
+
dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
|
| 99 |
+
|
| 100 |
+
val_batch_size = cfg.batch_size
|
| 101 |
+
val_eval_batch_size = cfg.eval_batch_size
|
| 102 |
+
num_workers = cfg.num_workers
|
| 103 |
+
pin_memory = cfg.pin_memory
|
| 104 |
+
_, val_loader = construct_loader(dataset,
|
| 105 |
+
val_batch_size,
|
| 106 |
+
num_workers,
|
| 107 |
+
shuffle=False,
|
| 108 |
+
drop_last=False,
|
| 109 |
+
pin_memory=pin_memory)
|
| 110 |
+
_, eval_loader = construct_loader(dataset,
|
| 111 |
+
val_eval_batch_size,
|
| 112 |
+
num_workers,
|
| 113 |
+
shuffle=False,
|
| 114 |
+
drop_last=False,
|
| 115 |
+
pin_memory=pin_memory)
|
| 116 |
+
|
| 117 |
+
return dataset, val_loader, eval_loader
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]:
|
| 121 |
+
if dataset_name.startswith('audiocaps_full'):
|
| 122 |
+
dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path,
|
| 123 |
+
cfg.eval_data.AudioCaps_full.csv_path)
|
| 124 |
+
elif dataset_name.startswith('audiocaps'):
|
| 125 |
+
dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path,
|
| 126 |
+
cfg.eval_data.AudioCaps.csv_path)
|
| 127 |
+
elif dataset_name.startswith('moviegen'):
|
| 128 |
+
dataset = MovieGen(cfg.eval_data.MovieGen.video_path,
|
| 129 |
+
cfg.eval_data.MovieGen.jsonl_path,
|
| 130 |
+
duration_sec=cfg.duration_s)
|
| 131 |
+
elif dataset_name.startswith('vggsound'):
|
| 132 |
+
dataset = VGGSound(cfg.eval_data.VGGSound.video_path,
|
| 133 |
+
cfg.eval_data.VGGSound.csv_path,
|
| 134 |
+
duration_sec=cfg.duration_s)
|
| 135 |
+
else:
|
| 136 |
+
raise ValueError(f'Invalid dataset name: {dataset_name}')
|
| 137 |
+
|
| 138 |
+
batch_size = cfg.batch_size
|
| 139 |
+
num_workers = cfg.num_workers
|
| 140 |
+
pin_memory = cfg.pin_memory
|
| 141 |
+
_, loader = construct_loader(dataset,
|
| 142 |
+
batch_size,
|
| 143 |
+
num_workers,
|
| 144 |
+
shuffle=False,
|
| 145 |
+
drop_last=False,
|
| 146 |
+
pin_memory=pin_memory,
|
| 147 |
+
error_avoidance=True)
|
| 148 |
+
return dataset, loader
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def error_avoidance_collate(batch):
|
| 152 |
+
batch = list(filter(lambda x: x is not None, batch))
|
| 153 |
+
return default_collate(batch)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def construct_loader(dataset: Dataset,
|
| 157 |
+
batch_size: int,
|
| 158 |
+
num_workers: int,
|
| 159 |
+
*,
|
| 160 |
+
shuffle: bool = True,
|
| 161 |
+
drop_last: bool = True,
|
| 162 |
+
pin_memory: bool = False,
|
| 163 |
+
error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]:
|
| 164 |
+
train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle)
|
| 165 |
+
train_loader = DataLoader(dataset,
|
| 166 |
+
batch_size,
|
| 167 |
+
sampler=train_sampler,
|
| 168 |
+
num_workers=num_workers,
|
| 169 |
+
worker_init_fn=worker_init_fn,
|
| 170 |
+
drop_last=drop_last,
|
| 171 |
+
persistent_workers=num_workers > 0,
|
| 172 |
+
pin_memory=pin_memory,
|
| 173 |
+
collate_fn=error_avoidance_collate if error_avoidance else None)
|
| 174 |
+
return train_sampler, train_loader
|
mmaudio/data/eval/__init__.py
ADDED
|
File without changes
|
mmaudio/data/eval/audiocaps.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data.dataset import Dataset
|
| 10 |
+
|
| 11 |
+
log = logging.getLogger()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class AudioCapsData(Dataset):
|
| 15 |
+
|
| 16 |
+
def __init__(self, audio_path: Union[str, Path], csv_path: Union[str, Path]):
|
| 17 |
+
df = pd.read_csv(csv_path).to_dict(orient='records')
|
| 18 |
+
|
| 19 |
+
audio_files = sorted(os.listdir(audio_path))
|
| 20 |
+
audio_files = set(
|
| 21 |
+
[Path(f).stem for f in audio_files if f.endswith('.wav') or f.endswith('.flac')])
|
| 22 |
+
|
| 23 |
+
self.data = []
|
| 24 |
+
for row in df:
|
| 25 |
+
self.data.append({
|
| 26 |
+
'name': row['name'],
|
| 27 |
+
'caption': row['caption'],
|
| 28 |
+
})
|
| 29 |
+
|
| 30 |
+
self.audio_path = Path(audio_path)
|
| 31 |
+
self.csv_path = Path(csv_path)
|
| 32 |
+
|
| 33 |
+
log.info(f'Found {len(self.data)} matching audio files in {self.audio_path}')
|
| 34 |
+
|
| 35 |
+
def __getitem__(self, idx: int) -> torch.Tensor:
|
| 36 |
+
return self.data[idx]
|
| 37 |
+
|
| 38 |
+
def __len__(self):
|
| 39 |
+
return len(self.data)
|
mmaudio/data/eval/moviegen.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch.utils.data.dataset import Dataset
|
| 9 |
+
from torchvision.transforms import v2
|
| 10 |
+
from torio.io import StreamingMediaDecoder
|
| 11 |
+
|
| 12 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 13 |
+
|
| 14 |
+
log = logging.getLogger()
|
| 15 |
+
|
| 16 |
+
_CLIP_SIZE = 384
|
| 17 |
+
_CLIP_FPS = 8.0
|
| 18 |
+
|
| 19 |
+
_SYNC_SIZE = 224
|
| 20 |
+
_SYNC_FPS = 25.0
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class MovieGenData(Dataset):
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
video_root: Union[str, Path],
|
| 28 |
+
sync_root: Union[str, Path],
|
| 29 |
+
jsonl_root: Union[str, Path],
|
| 30 |
+
*,
|
| 31 |
+
duration_sec: float = 10.0,
|
| 32 |
+
read_clip: bool = True,
|
| 33 |
+
):
|
| 34 |
+
self.video_root = Path(video_root)
|
| 35 |
+
self.sync_root = Path(sync_root)
|
| 36 |
+
self.jsonl_root = Path(jsonl_root)
|
| 37 |
+
self.read_clip = read_clip
|
| 38 |
+
|
| 39 |
+
videos = sorted(os.listdir(self.video_root))
|
| 40 |
+
videos = [v[:-4] for v in videos] # remove extensions
|
| 41 |
+
self.captions = {}
|
| 42 |
+
|
| 43 |
+
for v in videos:
|
| 44 |
+
with open(self.jsonl_root / (v + '.jsonl')) as f:
|
| 45 |
+
data = json.load(f)
|
| 46 |
+
self.captions[v] = data['audio_prompt']
|
| 47 |
+
|
| 48 |
+
if local_rank == 0:
|
| 49 |
+
log.info(f'{len(videos)} videos found in {video_root}')
|
| 50 |
+
|
| 51 |
+
self.duration_sec = duration_sec
|
| 52 |
+
|
| 53 |
+
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
|
| 54 |
+
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
|
| 55 |
+
|
| 56 |
+
self.clip_augment = v2.Compose([
|
| 57 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 58 |
+
v2.ToImage(),
|
| 59 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
self.sync_augment = v2.Compose([
|
| 63 |
+
v2.Resize((_SYNC_SIZE, _SYNC_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 64 |
+
v2.CenterCrop(_SYNC_SIZE),
|
| 65 |
+
v2.ToImage(),
|
| 66 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 67 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 68 |
+
])
|
| 69 |
+
|
| 70 |
+
self.videos = videos
|
| 71 |
+
|
| 72 |
+
def sample(self, idx: int) -> dict[str, torch.Tensor]:
|
| 73 |
+
video_id = self.videos[idx]
|
| 74 |
+
caption = self.captions[video_id]
|
| 75 |
+
|
| 76 |
+
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
|
| 77 |
+
reader.add_basic_video_stream(
|
| 78 |
+
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
|
| 79 |
+
frame_rate=_CLIP_FPS,
|
| 80 |
+
format='rgb24',
|
| 81 |
+
)
|
| 82 |
+
reader.add_basic_video_stream(
|
| 83 |
+
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
|
| 84 |
+
frame_rate=_SYNC_FPS,
|
| 85 |
+
format='rgb24',
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
reader.fill_buffer()
|
| 89 |
+
data_chunk = reader.pop_chunks()
|
| 90 |
+
|
| 91 |
+
clip_chunk = data_chunk[0]
|
| 92 |
+
sync_chunk = data_chunk[1]
|
| 93 |
+
if clip_chunk is None:
|
| 94 |
+
raise RuntimeError(f'CLIP video returned None {video_id}')
|
| 95 |
+
if clip_chunk.shape[0] < self.clip_expected_length:
|
| 96 |
+
raise RuntimeError(f'CLIP video too short {video_id}')
|
| 97 |
+
|
| 98 |
+
if sync_chunk is None:
|
| 99 |
+
raise RuntimeError(f'Sync video returned None {video_id}')
|
| 100 |
+
if sync_chunk.shape[0] < self.sync_expected_length:
|
| 101 |
+
raise RuntimeError(f'Sync video too short {video_id}')
|
| 102 |
+
|
| 103 |
+
# truncate the video
|
| 104 |
+
clip_chunk = clip_chunk[:self.clip_expected_length]
|
| 105 |
+
if clip_chunk.shape[0] != self.clip_expected_length:
|
| 106 |
+
raise RuntimeError(f'CLIP video wrong length {video_id}, '
|
| 107 |
+
f'expected {self.clip_expected_length}, '
|
| 108 |
+
f'got {clip_chunk.shape[0]}')
|
| 109 |
+
clip_chunk = self.clip_augment(clip_chunk)
|
| 110 |
+
|
| 111 |
+
sync_chunk = sync_chunk[:self.sync_expected_length]
|
| 112 |
+
if sync_chunk.shape[0] != self.sync_expected_length:
|
| 113 |
+
raise RuntimeError(f'Sync video wrong length {video_id}, '
|
| 114 |
+
f'expected {self.sync_expected_length}, '
|
| 115 |
+
f'got {sync_chunk.shape[0]}')
|
| 116 |
+
sync_chunk = self.sync_augment(sync_chunk)
|
| 117 |
+
|
| 118 |
+
data = {
|
| 119 |
+
'name': video_id,
|
| 120 |
+
'caption': caption,
|
| 121 |
+
'clip_video': clip_chunk,
|
| 122 |
+
'sync_video': sync_chunk,
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
return data
|
| 126 |
+
|
| 127 |
+
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
| 128 |
+
return self.sample(idx)
|
| 129 |
+
|
| 130 |
+
def __len__(self):
|
| 131 |
+
return len(self.captions)
|
mmaudio/data/eval/video_dataset.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Union
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data.dataset import Dataset
|
| 10 |
+
from torchvision.transforms import v2
|
| 11 |
+
from torio.io import StreamingMediaDecoder
|
| 12 |
+
|
| 13 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 14 |
+
|
| 15 |
+
log = logging.getLogger()
|
| 16 |
+
|
| 17 |
+
_CLIP_SIZE = 384
|
| 18 |
+
_CLIP_FPS = 8.0
|
| 19 |
+
|
| 20 |
+
_SYNC_SIZE = 224
|
| 21 |
+
_SYNC_FPS = 25.0
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class VideoDataset(Dataset):
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
video_root: Union[str, Path],
|
| 29 |
+
*,
|
| 30 |
+
duration_sec: float = 8.0,
|
| 31 |
+
):
|
| 32 |
+
self.video_root = Path(video_root)
|
| 33 |
+
|
| 34 |
+
self.duration_sec = duration_sec
|
| 35 |
+
|
| 36 |
+
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
|
| 37 |
+
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
|
| 38 |
+
|
| 39 |
+
self.clip_transform = v2.Compose([
|
| 40 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 41 |
+
v2.ToImage(),
|
| 42 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 43 |
+
])
|
| 44 |
+
|
| 45 |
+
self.sync_transform = v2.Compose([
|
| 46 |
+
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
|
| 47 |
+
v2.CenterCrop(_SYNC_SIZE),
|
| 48 |
+
v2.ToImage(),
|
| 49 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 50 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 51 |
+
])
|
| 52 |
+
|
| 53 |
+
# to be implemented by subclasses
|
| 54 |
+
self.captions = {}
|
| 55 |
+
self.videos = sorted(list(self.captions.keys()))
|
| 56 |
+
|
| 57 |
+
def sample(self, idx: int) -> dict[str, torch.Tensor]:
|
| 58 |
+
video_id = self.videos[idx]
|
| 59 |
+
caption = self.captions[video_id]
|
| 60 |
+
|
| 61 |
+
reader = StreamingMediaDecoder(self.video_root / (video_id + '.mp4'))
|
| 62 |
+
reader.add_basic_video_stream(
|
| 63 |
+
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
|
| 64 |
+
frame_rate=_CLIP_FPS,
|
| 65 |
+
format='rgb24',
|
| 66 |
+
)
|
| 67 |
+
reader.add_basic_video_stream(
|
| 68 |
+
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
|
| 69 |
+
frame_rate=_SYNC_FPS,
|
| 70 |
+
format='rgb24',
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
reader.fill_buffer()
|
| 74 |
+
data_chunk = reader.pop_chunks()
|
| 75 |
+
|
| 76 |
+
clip_chunk = data_chunk[0]
|
| 77 |
+
sync_chunk = data_chunk[1]
|
| 78 |
+
if clip_chunk is None:
|
| 79 |
+
raise RuntimeError(f'CLIP video returned None {video_id}')
|
| 80 |
+
if clip_chunk.shape[0] < self.clip_expected_length:
|
| 81 |
+
raise RuntimeError(
|
| 82 |
+
f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
if sync_chunk is None:
|
| 86 |
+
raise RuntimeError(f'Sync video returned None {video_id}')
|
| 87 |
+
if sync_chunk.shape[0] < self.sync_expected_length:
|
| 88 |
+
raise RuntimeError(
|
| 89 |
+
f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# truncate the video
|
| 93 |
+
clip_chunk = clip_chunk[:self.clip_expected_length]
|
| 94 |
+
if clip_chunk.shape[0] != self.clip_expected_length:
|
| 95 |
+
raise RuntimeError(f'CLIP video wrong length {video_id}, '
|
| 96 |
+
f'expected {self.clip_expected_length}, '
|
| 97 |
+
f'got {clip_chunk.shape[0]}')
|
| 98 |
+
clip_chunk = self.clip_transform(clip_chunk)
|
| 99 |
+
|
| 100 |
+
sync_chunk = sync_chunk[:self.sync_expected_length]
|
| 101 |
+
if sync_chunk.shape[0] != self.sync_expected_length:
|
| 102 |
+
raise RuntimeError(f'Sync video wrong length {video_id}, '
|
| 103 |
+
f'expected {self.sync_expected_length}, '
|
| 104 |
+
f'got {sync_chunk.shape[0]}')
|
| 105 |
+
sync_chunk = self.sync_transform(sync_chunk)
|
| 106 |
+
|
| 107 |
+
data = {
|
| 108 |
+
'name': video_id,
|
| 109 |
+
'caption': caption,
|
| 110 |
+
'clip_video': clip_chunk,
|
| 111 |
+
'sync_video': sync_chunk,
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
return data
|
| 115 |
+
|
| 116 |
+
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
| 117 |
+
try:
|
| 118 |
+
return self.sample(idx)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
log.error(f'Error loading video {self.videos[idx]}: {e}')
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
def __len__(self):
|
| 124 |
+
return len(self.captions)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class VGGSound(VideoDataset):
|
| 128 |
+
|
| 129 |
+
def __init__(
|
| 130 |
+
self,
|
| 131 |
+
video_root: Union[str, Path],
|
| 132 |
+
csv_path: Union[str, Path],
|
| 133 |
+
*,
|
| 134 |
+
duration_sec: float = 8.0,
|
| 135 |
+
):
|
| 136 |
+
super().__init__(video_root, duration_sec=duration_sec)
|
| 137 |
+
self.video_root = Path(video_root)
|
| 138 |
+
self.csv_path = Path(csv_path)
|
| 139 |
+
|
| 140 |
+
videos = sorted(os.listdir(self.video_root))
|
| 141 |
+
if local_rank == 0:
|
| 142 |
+
log.info(f'{len(videos)} videos found in {video_root}')
|
| 143 |
+
self.captions = {}
|
| 144 |
+
|
| 145 |
+
df = pd.read_csv(csv_path, header=None, names=['id', 'sec', 'caption',
|
| 146 |
+
'split']).to_dict(orient='records')
|
| 147 |
+
|
| 148 |
+
videos_no_found = []
|
| 149 |
+
for row in df:
|
| 150 |
+
if row['split'] == 'test':
|
| 151 |
+
start_sec = int(row['sec'])
|
| 152 |
+
video_id = str(row['id'])
|
| 153 |
+
# this is how our videos are named
|
| 154 |
+
video_name = f'{video_id}_{start_sec:06d}'
|
| 155 |
+
if video_name + '.mp4' not in videos:
|
| 156 |
+
videos_no_found.append(video_name)
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
self.captions[video_name] = row['caption']
|
| 160 |
+
|
| 161 |
+
if local_rank == 0:
|
| 162 |
+
log.info(f'{len(videos)} videos found in {video_root}')
|
| 163 |
+
log.info(f'{len(self.captions)} useable videos found')
|
| 164 |
+
if videos_no_found:
|
| 165 |
+
log.info(f'{len(videos_no_found)} found in {csv_path} but not in {video_root}')
|
| 166 |
+
log.info(
|
| 167 |
+
'A small amount is expected, as not all videos are still available on YouTube')
|
| 168 |
+
|
| 169 |
+
self.videos = sorted(list(self.captions.keys()))
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class MovieGen(VideoDataset):
|
| 173 |
+
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
video_root: Union[str, Path],
|
| 177 |
+
jsonl_root: Union[str, Path],
|
| 178 |
+
*,
|
| 179 |
+
duration_sec: float = 10.0,
|
| 180 |
+
):
|
| 181 |
+
super().__init__(video_root, duration_sec=duration_sec)
|
| 182 |
+
self.video_root = Path(video_root)
|
| 183 |
+
self.jsonl_root = Path(jsonl_root)
|
| 184 |
+
|
| 185 |
+
videos = sorted(os.listdir(self.video_root))
|
| 186 |
+
videos = [v[:-4] for v in videos] # remove extensions
|
| 187 |
+
self.captions = {}
|
| 188 |
+
|
| 189 |
+
for v in videos:
|
| 190 |
+
with open(self.jsonl_root / (v + '.jsonl')) as f:
|
| 191 |
+
data = json.load(f)
|
| 192 |
+
self.captions[v] = data['audio_prompt']
|
| 193 |
+
|
| 194 |
+
if local_rank == 0:
|
| 195 |
+
log.info(f'{len(videos)} videos found in {video_root}')
|
| 196 |
+
|
| 197 |
+
self.videos = videos
|
mmaudio/data/extracted_audio.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Union
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import torch
|
| 7 |
+
from tensordict import TensorDict
|
| 8 |
+
from torch.utils.data.dataset import Dataset
|
| 9 |
+
|
| 10 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 11 |
+
|
| 12 |
+
log = logging.getLogger()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ExtractedAudio(Dataset):
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
tsv_path: Union[str, Path],
|
| 20 |
+
*,
|
| 21 |
+
premade_mmap_dir: Union[str, Path],
|
| 22 |
+
data_dim: dict[str, int],
|
| 23 |
+
):
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
self.data_dim = data_dim
|
| 27 |
+
self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
|
| 28 |
+
self.ids = [str(d['id']) for d in self.df_list]
|
| 29 |
+
|
| 30 |
+
log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
|
| 31 |
+
# load precomputed memory mapped tensors
|
| 32 |
+
premade_mmap_dir = Path(premade_mmap_dir)
|
| 33 |
+
td = TensorDict.load_memmap(premade_mmap_dir)
|
| 34 |
+
log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
|
| 35 |
+
self.mean = td['mean']
|
| 36 |
+
self.std = td['std']
|
| 37 |
+
self.text_features = td['text_features']
|
| 38 |
+
|
| 39 |
+
log.info(f'Loaded {len(self)} samples from {premade_mmap_dir}.')
|
| 40 |
+
log.info(f'Loaded mean: {self.mean.shape}.')
|
| 41 |
+
log.info(f'Loaded std: {self.std.shape}.')
|
| 42 |
+
log.info(f'Loaded text features: {self.text_features.shape}.')
|
| 43 |
+
|
| 44 |
+
assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
|
| 45 |
+
f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
|
| 46 |
+
assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
|
| 47 |
+
f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
|
| 48 |
+
|
| 49 |
+
assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
|
| 50 |
+
f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
|
| 51 |
+
assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
|
| 52 |
+
f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
|
| 53 |
+
|
| 54 |
+
self.fake_clip_features = torch.zeros(self.data_dim['clip_seq_len'],
|
| 55 |
+
self.data_dim['clip_dim'])
|
| 56 |
+
self.fake_sync_features = torch.zeros(self.data_dim['sync_seq_len'],
|
| 57 |
+
self.data_dim['sync_dim'])
|
| 58 |
+
self.video_exist = torch.tensor(0, dtype=torch.bool)
|
| 59 |
+
self.text_exist = torch.tensor(1, dtype=torch.bool)
|
| 60 |
+
|
| 61 |
+
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 62 |
+
latents = self.mean
|
| 63 |
+
return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
|
| 64 |
+
|
| 65 |
+
def get_memory_mapped_tensor(self) -> TensorDict:
|
| 66 |
+
td = TensorDict({
|
| 67 |
+
'mean': self.mean,
|
| 68 |
+
'std': self.std,
|
| 69 |
+
'text_features': self.text_features,
|
| 70 |
+
})
|
| 71 |
+
return td
|
| 72 |
+
|
| 73 |
+
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
| 74 |
+
data = {
|
| 75 |
+
'id': str(self.df_list[idx]['id']),
|
| 76 |
+
'a_mean': self.mean[idx],
|
| 77 |
+
'a_std': self.std[idx],
|
| 78 |
+
'clip_features': self.fake_clip_features,
|
| 79 |
+
'sync_features': self.fake_sync_features,
|
| 80 |
+
'text_features': self.text_features[idx],
|
| 81 |
+
'caption': self.df_list[idx]['caption'],
|
| 82 |
+
'video_exist': self.video_exist,
|
| 83 |
+
'text_exist': self.text_exist,
|
| 84 |
+
}
|
| 85 |
+
return data
|
| 86 |
+
|
| 87 |
+
def __len__(self):
|
| 88 |
+
return len(self.ids)
|
mmaudio/data/extracted_vgg.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Union
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import torch
|
| 7 |
+
from tensordict import TensorDict
|
| 8 |
+
from torch.utils.data.dataset import Dataset
|
| 9 |
+
|
| 10 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 11 |
+
|
| 12 |
+
log = logging.getLogger()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class ExtractedVGG(Dataset):
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
tsv_path: Union[str, Path],
|
| 20 |
+
*,
|
| 21 |
+
premade_mmap_dir: Union[str, Path],
|
| 22 |
+
data_dim: dict[str, int],
|
| 23 |
+
):
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
self.data_dim = data_dim
|
| 27 |
+
self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records')
|
| 28 |
+
self.ids = [d['id'] for d in self.df_list]
|
| 29 |
+
|
| 30 |
+
log.info(f'Loading precomputed mmap from {premade_mmap_dir}')
|
| 31 |
+
# load precomputed memory mapped tensors
|
| 32 |
+
premade_mmap_dir = Path(premade_mmap_dir)
|
| 33 |
+
td = TensorDict.load_memmap(premade_mmap_dir)
|
| 34 |
+
log.info(f'Loaded precomputed mmap from {premade_mmap_dir}')
|
| 35 |
+
self.mean = td['mean']
|
| 36 |
+
self.std = td['std']
|
| 37 |
+
self.clip_features = td['clip_features']
|
| 38 |
+
self.sync_features = td['sync_features']
|
| 39 |
+
self.text_features = td['text_features']
|
| 40 |
+
|
| 41 |
+
if local_rank == 0:
|
| 42 |
+
log.info(f'Loaded {len(self)} samples.')
|
| 43 |
+
log.info(f'Loaded mean: {self.mean.shape}.')
|
| 44 |
+
log.info(f'Loaded std: {self.std.shape}.')
|
| 45 |
+
log.info(f'Loaded clip_features: {self.clip_features.shape}.')
|
| 46 |
+
log.info(f'Loaded sync_features: {self.sync_features.shape}.')
|
| 47 |
+
log.info(f'Loaded text_features: {self.text_features.shape}.')
|
| 48 |
+
|
| 49 |
+
assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \
|
| 50 |
+
f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}'
|
| 51 |
+
assert self.std.shape[1] == self.data_dim['latent_seq_len'], \
|
| 52 |
+
f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}'
|
| 53 |
+
|
| 54 |
+
assert self.clip_features.shape[1] == self.data_dim['clip_seq_len'], \
|
| 55 |
+
f'{self.clip_features.shape[1]} != {self.data_dim["clip_seq_len"]}'
|
| 56 |
+
assert self.sync_features.shape[1] == self.data_dim['sync_seq_len'], \
|
| 57 |
+
f'{self.sync_features.shape[1]} != {self.data_dim["sync_seq_len"]}'
|
| 58 |
+
assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \
|
| 59 |
+
f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}'
|
| 60 |
+
|
| 61 |
+
assert self.clip_features.shape[-1] == self.data_dim['clip_dim'], \
|
| 62 |
+
f'{self.clip_features.shape[-1]} != {self.data_dim["clip_dim"]}'
|
| 63 |
+
assert self.sync_features.shape[-1] == self.data_dim['sync_dim'], \
|
| 64 |
+
f'{self.sync_features.shape[-1]} != {self.data_dim["sync_dim"]}'
|
| 65 |
+
assert self.text_features.shape[-1] == self.data_dim['text_dim'], \
|
| 66 |
+
f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}'
|
| 67 |
+
|
| 68 |
+
self.video_exist = torch.tensor(1, dtype=torch.bool)
|
| 69 |
+
self.text_exist = torch.tensor(1, dtype=torch.bool)
|
| 70 |
+
|
| 71 |
+
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 72 |
+
latents = self.mean
|
| 73 |
+
return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1))
|
| 74 |
+
|
| 75 |
+
def get_memory_mapped_tensor(self) -> TensorDict:
|
| 76 |
+
td = TensorDict({
|
| 77 |
+
'mean': self.mean,
|
| 78 |
+
'std': self.std,
|
| 79 |
+
'clip_features': self.clip_features,
|
| 80 |
+
'sync_features': self.sync_features,
|
| 81 |
+
'text_features': self.text_features,
|
| 82 |
+
})
|
| 83 |
+
return td
|
| 84 |
+
|
| 85 |
+
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
| 86 |
+
data = {
|
| 87 |
+
'id': self.df_list[idx]['id'],
|
| 88 |
+
'a_mean': self.mean[idx],
|
| 89 |
+
'a_std': self.std[idx],
|
| 90 |
+
'clip_features': self.clip_features[idx],
|
| 91 |
+
'sync_features': self.sync_features[idx],
|
| 92 |
+
'text_features': self.text_features[idx],
|
| 93 |
+
'caption': self.df_list[idx]['label'],
|
| 94 |
+
'video_exist': self.video_exist,
|
| 95 |
+
'text_exist': self.text_exist,
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
return data
|
| 99 |
+
|
| 100 |
+
def __len__(self):
|
| 101 |
+
return len(self.ids)
|
mmaudio/data/extraction/__init__.py
ADDED
|
File without changes
|
mmaudio/data/extraction/vgg_sound.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Optional, Union
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
import torchaudio
|
| 9 |
+
from torch.utils.data.dataset import Dataset
|
| 10 |
+
from torchvision.transforms import v2
|
| 11 |
+
from torio.io import StreamingMediaDecoder
|
| 12 |
+
|
| 13 |
+
from mmaudio.utils.dist_utils import local_rank
|
| 14 |
+
|
| 15 |
+
log = logging.getLogger()
|
| 16 |
+
|
| 17 |
+
_CLIP_SIZE = 384
|
| 18 |
+
_CLIP_FPS = 8.0
|
| 19 |
+
|
| 20 |
+
_SYNC_SIZE = 224
|
| 21 |
+
_SYNC_FPS = 25.0
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class VGGSound(Dataset):
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
root: Union[str, Path],
|
| 29 |
+
*,
|
| 30 |
+
tsv_path: Union[str, Path] = 'sets/vgg3-train.tsv',
|
| 31 |
+
sample_rate: int = 16_000,
|
| 32 |
+
duration_sec: float = 8.0,
|
| 33 |
+
audio_samples: Optional[int] = None,
|
| 34 |
+
normalize_audio: bool = False,
|
| 35 |
+
):
|
| 36 |
+
self.root = Path(root)
|
| 37 |
+
self.normalize_audio = normalize_audio
|
| 38 |
+
if audio_samples is None:
|
| 39 |
+
self.audio_samples = int(sample_rate * duration_sec)
|
| 40 |
+
else:
|
| 41 |
+
self.audio_samples = audio_samples
|
| 42 |
+
effective_duration = audio_samples / sample_rate
|
| 43 |
+
# make sure the duration is close enough, within 15ms
|
| 44 |
+
assert abs(effective_duration - duration_sec) < 0.015, \
|
| 45 |
+
f'audio_samples {audio_samples} does not match duration_sec {duration_sec}'
|
| 46 |
+
|
| 47 |
+
videos = sorted(os.listdir(self.root))
|
| 48 |
+
videos = set([Path(v).stem for v in videos]) # remove extensions
|
| 49 |
+
self.labels = {}
|
| 50 |
+
self.videos = []
|
| 51 |
+
missing_videos = []
|
| 52 |
+
|
| 53 |
+
# read the tsv for subset information
|
| 54 |
+
df_list = pd.read_csv(tsv_path, sep='\t', dtype={'id': str}).to_dict('records')
|
| 55 |
+
for record in df_list:
|
| 56 |
+
id = record['id']
|
| 57 |
+
label = record['label']
|
| 58 |
+
if id in videos:
|
| 59 |
+
self.labels[id] = label
|
| 60 |
+
self.videos.append(id)
|
| 61 |
+
else:
|
| 62 |
+
missing_videos.append(id)
|
| 63 |
+
|
| 64 |
+
if local_rank == 0:
|
| 65 |
+
log.info(f'{len(videos)} videos found in {root}')
|
| 66 |
+
log.info(f'{len(self.videos)} videos found in {tsv_path}')
|
| 67 |
+
log.info(f'{len(missing_videos)} videos missing in {root}')
|
| 68 |
+
|
| 69 |
+
self.sample_rate = sample_rate
|
| 70 |
+
self.duration_sec = duration_sec
|
| 71 |
+
|
| 72 |
+
self.expected_audio_length = audio_samples
|
| 73 |
+
self.clip_expected_length = int(_CLIP_FPS * self.duration_sec)
|
| 74 |
+
self.sync_expected_length = int(_SYNC_FPS * self.duration_sec)
|
| 75 |
+
|
| 76 |
+
self.clip_transform = v2.Compose([
|
| 77 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 78 |
+
v2.ToImage(),
|
| 79 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 80 |
+
])
|
| 81 |
+
|
| 82 |
+
self.sync_transform = v2.Compose([
|
| 83 |
+
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
|
| 84 |
+
v2.CenterCrop(_SYNC_SIZE),
|
| 85 |
+
v2.ToImage(),
|
| 86 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 87 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 88 |
+
])
|
| 89 |
+
|
| 90 |
+
self.resampler = {}
|
| 91 |
+
|
| 92 |
+
def sample(self, idx: int) -> dict[str, torch.Tensor]:
|
| 93 |
+
video_id = self.videos[idx]
|
| 94 |
+
label = self.labels[video_id]
|
| 95 |
+
|
| 96 |
+
reader = StreamingMediaDecoder(self.root / (video_id + '.mp4'))
|
| 97 |
+
reader.add_basic_video_stream(
|
| 98 |
+
frames_per_chunk=int(_CLIP_FPS * self.duration_sec),
|
| 99 |
+
frame_rate=_CLIP_FPS,
|
| 100 |
+
format='rgb24',
|
| 101 |
+
)
|
| 102 |
+
reader.add_basic_video_stream(
|
| 103 |
+
frames_per_chunk=int(_SYNC_FPS * self.duration_sec),
|
| 104 |
+
frame_rate=_SYNC_FPS,
|
| 105 |
+
format='rgb24',
|
| 106 |
+
)
|
| 107 |
+
reader.add_basic_audio_stream(frames_per_chunk=2**30, )
|
| 108 |
+
|
| 109 |
+
reader.fill_buffer()
|
| 110 |
+
data_chunk = reader.pop_chunks()
|
| 111 |
+
|
| 112 |
+
clip_chunk = data_chunk[0]
|
| 113 |
+
sync_chunk = data_chunk[1]
|
| 114 |
+
audio_chunk = data_chunk[2]
|
| 115 |
+
|
| 116 |
+
if clip_chunk is None:
|
| 117 |
+
raise RuntimeError(f'CLIP video returned None {video_id}')
|
| 118 |
+
if clip_chunk.shape[0] < self.clip_expected_length:
|
| 119 |
+
raise RuntimeError(
|
| 120 |
+
f'CLIP video too short {video_id}, expected {self.clip_expected_length}, got {clip_chunk.shape[0]}'
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
if sync_chunk is None:
|
| 124 |
+
raise RuntimeError(f'Sync video returned None {video_id}')
|
| 125 |
+
if sync_chunk.shape[0] < self.sync_expected_length:
|
| 126 |
+
raise RuntimeError(
|
| 127 |
+
f'Sync video too short {video_id}, expected {self.sync_expected_length}, got {sync_chunk.shape[0]}'
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# process audio
|
| 131 |
+
sample_rate = int(reader.get_out_stream_info(2).sample_rate)
|
| 132 |
+
audio_chunk = audio_chunk.transpose(0, 1)
|
| 133 |
+
audio_chunk = audio_chunk.mean(dim=0) # mono
|
| 134 |
+
if self.normalize_audio:
|
| 135 |
+
abs_max = audio_chunk.abs().max()
|
| 136 |
+
audio_chunk = audio_chunk / abs_max * 0.95
|
| 137 |
+
if abs_max <= 1e-6:
|
| 138 |
+
raise RuntimeError(f'Audio is silent {video_id}')
|
| 139 |
+
|
| 140 |
+
# resample
|
| 141 |
+
if sample_rate == self.sample_rate:
|
| 142 |
+
audio_chunk = audio_chunk
|
| 143 |
+
else:
|
| 144 |
+
if sample_rate not in self.resampler:
|
| 145 |
+
# https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
|
| 146 |
+
self.resampler[sample_rate] = torchaudio.transforms.Resample(
|
| 147 |
+
sample_rate,
|
| 148 |
+
self.sample_rate,
|
| 149 |
+
lowpass_filter_width=64,
|
| 150 |
+
rolloff=0.9475937167399596,
|
| 151 |
+
resampling_method='sinc_interp_kaiser',
|
| 152 |
+
beta=14.769656459379492,
|
| 153 |
+
)
|
| 154 |
+
audio_chunk = self.resampler[sample_rate](audio_chunk)
|
| 155 |
+
|
| 156 |
+
if audio_chunk.shape[0] < self.expected_audio_length:
|
| 157 |
+
raise RuntimeError(f'Audio too short {video_id}')
|
| 158 |
+
audio_chunk = audio_chunk[:self.expected_audio_length]
|
| 159 |
+
|
| 160 |
+
# truncate the video
|
| 161 |
+
clip_chunk = clip_chunk[:self.clip_expected_length]
|
| 162 |
+
if clip_chunk.shape[0] != self.clip_expected_length:
|
| 163 |
+
raise RuntimeError(f'CLIP video wrong length {video_id}, '
|
| 164 |
+
f'expected {self.clip_expected_length}, '
|
| 165 |
+
f'got {clip_chunk.shape[0]}')
|
| 166 |
+
clip_chunk = self.clip_transform(clip_chunk)
|
| 167 |
+
|
| 168 |
+
sync_chunk = sync_chunk[:self.sync_expected_length]
|
| 169 |
+
if sync_chunk.shape[0] != self.sync_expected_length:
|
| 170 |
+
raise RuntimeError(f'Sync video wrong length {video_id}, '
|
| 171 |
+
f'expected {self.sync_expected_length}, '
|
| 172 |
+
f'got {sync_chunk.shape[0]}')
|
| 173 |
+
sync_chunk = self.sync_transform(sync_chunk)
|
| 174 |
+
|
| 175 |
+
data = {
|
| 176 |
+
'id': video_id,
|
| 177 |
+
'caption': label,
|
| 178 |
+
'audio': audio_chunk,
|
| 179 |
+
'clip_video': clip_chunk,
|
| 180 |
+
'sync_video': sync_chunk,
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
return data
|
| 184 |
+
|
| 185 |
+
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
| 186 |
+
try:
|
| 187 |
+
return self.sample(idx)
|
| 188 |
+
except Exception as e:
|
| 189 |
+
log.error(f'Error loading video {self.videos[idx]}: {e}')
|
| 190 |
+
return None
|
| 191 |
+
|
| 192 |
+
def __len__(self):
|
| 193 |
+
return len(self.labels)
|
mmaudio/data/extraction/wav_dataset.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Union
|
| 5 |
+
|
| 6 |
+
import open_clip
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
import torchaudio
|
| 10 |
+
from torch.utils.data.dataset import Dataset
|
| 11 |
+
|
| 12 |
+
log = logging.getLogger()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class WavTextClipsDataset(Dataset):
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
root: Union[str, Path],
|
| 20 |
+
*,
|
| 21 |
+
captions_tsv: Union[str, Path],
|
| 22 |
+
clips_tsv: Union[str, Path],
|
| 23 |
+
sample_rate: int,
|
| 24 |
+
num_samples: int,
|
| 25 |
+
normalize_audio: bool = False,
|
| 26 |
+
reject_silent: bool = False,
|
| 27 |
+
tokenizer_id: str = 'ViT-H-14-378-quickgelu',
|
| 28 |
+
):
|
| 29 |
+
self.root = Path(root)
|
| 30 |
+
self.sample_rate = sample_rate
|
| 31 |
+
self.num_samples = num_samples
|
| 32 |
+
self.normalize_audio = normalize_audio
|
| 33 |
+
self.reject_silent = reject_silent
|
| 34 |
+
self.tokenizer = open_clip.get_tokenizer(tokenizer_id)
|
| 35 |
+
|
| 36 |
+
audios = sorted(os.listdir(self.root))
|
| 37 |
+
audios = set([
|
| 38 |
+
Path(audio).stem for audio in audios
|
| 39 |
+
if audio.endswith('.wav') or audio.endswith('.flac')
|
| 40 |
+
])
|
| 41 |
+
self.captions = {}
|
| 42 |
+
|
| 43 |
+
# read the caption tsv
|
| 44 |
+
df_list = pd.read_csv(captions_tsv, sep='\t', dtype={'id': str}).to_dict('records')
|
| 45 |
+
for record in df_list:
|
| 46 |
+
id = record['id']
|
| 47 |
+
caption = record['caption']
|
| 48 |
+
self.captions[id] = caption
|
| 49 |
+
|
| 50 |
+
# read the clip tsv
|
| 51 |
+
df_list = pd.read_csv(clips_tsv, sep='\t', dtype={
|
| 52 |
+
'id': str,
|
| 53 |
+
'name': str
|
| 54 |
+
}).to_dict('records')
|
| 55 |
+
self.clips = []
|
| 56 |
+
for record in df_list:
|
| 57 |
+
record['id'] = record['id']
|
| 58 |
+
record['name'] = record['name']
|
| 59 |
+
id = record['id']
|
| 60 |
+
name = record['name']
|
| 61 |
+
if name not in self.captions:
|
| 62 |
+
log.warning(f'Audio {name} not found in {captions_tsv}')
|
| 63 |
+
continue
|
| 64 |
+
record['caption'] = self.captions[name]
|
| 65 |
+
self.clips.append(record)
|
| 66 |
+
|
| 67 |
+
log.info(f'Found {len(self.clips)} audio files in {self.root}')
|
| 68 |
+
|
| 69 |
+
self.resampler = {}
|
| 70 |
+
|
| 71 |
+
def __getitem__(self, idx: int) -> torch.Tensor:
|
| 72 |
+
try:
|
| 73 |
+
clip = self.clips[idx]
|
| 74 |
+
audio_name = clip['name']
|
| 75 |
+
audio_id = clip['id']
|
| 76 |
+
caption = clip['caption']
|
| 77 |
+
start_sample = clip['start_sample']
|
| 78 |
+
end_sample = clip['end_sample']
|
| 79 |
+
|
| 80 |
+
audio_path = self.root / f'{audio_name}.flac'
|
| 81 |
+
if not audio_path.exists():
|
| 82 |
+
audio_path = self.root / f'{audio_name}.wav'
|
| 83 |
+
assert audio_path.exists()
|
| 84 |
+
|
| 85 |
+
audio_chunk, sample_rate = torchaudio.load(audio_path)
|
| 86 |
+
audio_chunk = audio_chunk.mean(dim=0) # mono
|
| 87 |
+
abs_max = audio_chunk.abs().max()
|
| 88 |
+
if self.normalize_audio:
|
| 89 |
+
audio_chunk = audio_chunk / abs_max * 0.95
|
| 90 |
+
|
| 91 |
+
if self.reject_silent and abs_max < 1e-6:
|
| 92 |
+
log.warning(f'Rejecting silent audio')
|
| 93 |
+
return None
|
| 94 |
+
|
| 95 |
+
audio_chunk = audio_chunk[start_sample:end_sample]
|
| 96 |
+
|
| 97 |
+
# resample
|
| 98 |
+
if sample_rate == self.sample_rate:
|
| 99 |
+
audio_chunk = audio_chunk
|
| 100 |
+
else:
|
| 101 |
+
if sample_rate not in self.resampler:
|
| 102 |
+
# https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best
|
| 103 |
+
self.resampler[sample_rate] = torchaudio.transforms.Resample(
|
| 104 |
+
sample_rate,
|
| 105 |
+
self.sample_rate,
|
| 106 |
+
lowpass_filter_width=64,
|
| 107 |
+
rolloff=0.9475937167399596,
|
| 108 |
+
resampling_method='sinc_interp_kaiser',
|
| 109 |
+
beta=14.769656459379492,
|
| 110 |
+
)
|
| 111 |
+
audio_chunk = self.resampler[sample_rate](audio_chunk)
|
| 112 |
+
|
| 113 |
+
if audio_chunk.shape[0] < self.num_samples:
|
| 114 |
+
raise ValueError('Audio is too short')
|
| 115 |
+
audio_chunk = audio_chunk[:self.num_samples]
|
| 116 |
+
|
| 117 |
+
tokens = self.tokenizer([caption])[0]
|
| 118 |
+
|
| 119 |
+
output = {
|
| 120 |
+
'waveform': audio_chunk,
|
| 121 |
+
'id': audio_id,
|
| 122 |
+
'caption': caption,
|
| 123 |
+
'tokens': tokens,
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
return output
|
| 127 |
+
except Exception as e:
|
| 128 |
+
log.error(f'Error reading {audio_path}: {e}')
|
| 129 |
+
return None
|
| 130 |
+
|
| 131 |
+
def __len__(self):
|
| 132 |
+
return len(self.clips)
|
mmaudio/data/mm_dataset.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import bisect
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.utils.data.dataset import Dataset
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# modified from https://pytorch.org/docs/stable/_modules/torch/utils/data/dataset.html#ConcatDataset
|
| 8 |
+
class MultiModalDataset(Dataset):
|
| 9 |
+
datasets: list[Dataset]
|
| 10 |
+
cumulative_sizes: list[int]
|
| 11 |
+
|
| 12 |
+
@staticmethod
|
| 13 |
+
def cumsum(sequence):
|
| 14 |
+
r, s = [], 0
|
| 15 |
+
for e in sequence:
|
| 16 |
+
l = len(e)
|
| 17 |
+
r.append(l + s)
|
| 18 |
+
s += l
|
| 19 |
+
return r
|
| 20 |
+
|
| 21 |
+
def __init__(self, video_datasets: list[Dataset], audio_datasets: list[Dataset]):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.video_datasets = list(video_datasets)
|
| 24 |
+
self.audio_datasets = list(audio_datasets)
|
| 25 |
+
self.datasets = self.video_datasets + self.audio_datasets
|
| 26 |
+
|
| 27 |
+
self.cumulative_sizes = self.cumsum(self.datasets)
|
| 28 |
+
|
| 29 |
+
def __len__(self):
|
| 30 |
+
return self.cumulative_sizes[-1]
|
| 31 |
+
|
| 32 |
+
def __getitem__(self, idx):
|
| 33 |
+
if idx < 0:
|
| 34 |
+
if -idx > len(self):
|
| 35 |
+
raise ValueError("absolute value of index should not exceed dataset length")
|
| 36 |
+
idx = len(self) + idx
|
| 37 |
+
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
|
| 38 |
+
if dataset_idx == 0:
|
| 39 |
+
sample_idx = idx
|
| 40 |
+
else:
|
| 41 |
+
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
|
| 42 |
+
return self.datasets[dataset_idx][sample_idx]
|
| 43 |
+
|
| 44 |
+
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 45 |
+
return self.video_datasets[0].compute_latent_stats()
|
mmaudio/data/utils.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import random
|
| 4 |
+
import tempfile
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Any, Optional, Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.distributed as dist
|
| 10 |
+
from tensordict import MemoryMappedTensor
|
| 11 |
+
from torch.utils.data import DataLoader
|
| 12 |
+
from torch.utils.data.dataset import Dataset
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
|
| 15 |
+
from mmaudio.utils.dist_utils import local_rank, world_size
|
| 16 |
+
|
| 17 |
+
scratch_path = Path(os.environ['SLURM_SCRATCH'] if 'SLURM_SCRATCH' in os.environ else '/dev/shm')
|
| 18 |
+
shm_path = Path('/dev/shm')
|
| 19 |
+
|
| 20 |
+
log = logging.getLogger()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def reseed(seed):
|
| 24 |
+
random.seed(seed)
|
| 25 |
+
torch.manual_seed(seed)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def local_scatter_torch(obj: Optional[Any]):
|
| 29 |
+
if world_size == 1:
|
| 30 |
+
# Just one worker. Do nothing.
|
| 31 |
+
return obj
|
| 32 |
+
|
| 33 |
+
array = [obj] * world_size
|
| 34 |
+
target_array = [None]
|
| 35 |
+
if local_rank == 0:
|
| 36 |
+
dist.scatter_object_list(target_array, scatter_object_input_list=array, src=0)
|
| 37 |
+
else:
|
| 38 |
+
dist.scatter_object_list(target_array, scatter_object_input_list=None, src=0)
|
| 39 |
+
return target_array[0]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class ShardDataset(Dataset):
|
| 43 |
+
|
| 44 |
+
def __init__(self, root):
|
| 45 |
+
self.root = root
|
| 46 |
+
self.shards = sorted(os.listdir(root))
|
| 47 |
+
|
| 48 |
+
def __len__(self):
|
| 49 |
+
return len(self.shards)
|
| 50 |
+
|
| 51 |
+
def __getitem__(self, idx):
|
| 52 |
+
return torch.load(os.path.join(self.root, self.shards[idx]), weights_only=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_tmp_dir(in_memory: bool) -> Path:
|
| 56 |
+
return shm_path if in_memory else scratch_path
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def load_shards_and_share(data_path: Union[str, Path], ids: list[int],
|
| 60 |
+
in_memory: bool) -> MemoryMappedTensor:
|
| 61 |
+
if local_rank == 0:
|
| 62 |
+
with tempfile.NamedTemporaryFile(prefix='shared-tensor-', dir=get_tmp_dir(in_memory)) as f:
|
| 63 |
+
log.info(f'Loading shards from {data_path} into {f.name}...')
|
| 64 |
+
data = load_shards(data_path, ids=ids, tmp_file_path=f.name)
|
| 65 |
+
data = share_tensor_to_all(data)
|
| 66 |
+
torch.distributed.barrier()
|
| 67 |
+
f.close() # why does the context manager not close the file for me?
|
| 68 |
+
else:
|
| 69 |
+
log.info('Waiting for the data to be shared with me...')
|
| 70 |
+
data = share_tensor_to_all(None)
|
| 71 |
+
torch.distributed.barrier()
|
| 72 |
+
|
| 73 |
+
return data
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def load_shards(
|
| 77 |
+
data_path: Union[str, Path],
|
| 78 |
+
ids: list[int],
|
| 79 |
+
*,
|
| 80 |
+
tmp_file_path: str,
|
| 81 |
+
) -> Union[torch.Tensor, dict[str, torch.Tensor]]:
|
| 82 |
+
|
| 83 |
+
id_set = set(ids)
|
| 84 |
+
shards = sorted(os.listdir(data_path))
|
| 85 |
+
log.info(f'Found {len(shards)} shards in {data_path}.')
|
| 86 |
+
first_shard = torch.load(os.path.join(data_path, shards[0]), weights_only=True)
|
| 87 |
+
|
| 88 |
+
log.info(f'Rank {local_rank} created file {tmp_file_path}')
|
| 89 |
+
first_item = next(iter(first_shard.values()))
|
| 90 |
+
log.info(f'First item shape: {first_item.shape}')
|
| 91 |
+
mm_tensor = MemoryMappedTensor.empty(shape=(len(ids), *first_item.shape),
|
| 92 |
+
dtype=torch.float32,
|
| 93 |
+
filename=tmp_file_path,
|
| 94 |
+
existsok=True)
|
| 95 |
+
total_count = 0
|
| 96 |
+
used_index = set()
|
| 97 |
+
id_indexing = {i: idx for idx, i in enumerate(ids)}
|
| 98 |
+
# faster with no workers; otherwise we need to set_sharing_strategy('file_system')
|
| 99 |
+
loader = DataLoader(ShardDataset(data_path), batch_size=1, num_workers=0)
|
| 100 |
+
for data in tqdm(loader, desc='Loading shards'):
|
| 101 |
+
for i, v in data.items():
|
| 102 |
+
if i not in id_set:
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
# tensor_index = ids.index(i)
|
| 106 |
+
tensor_index = id_indexing[i]
|
| 107 |
+
if tensor_index in used_index:
|
| 108 |
+
raise ValueError(f'Duplicate id {i} found in {data_path}.')
|
| 109 |
+
used_index.add(tensor_index)
|
| 110 |
+
mm_tensor[tensor_index] = v
|
| 111 |
+
total_count += 1
|
| 112 |
+
|
| 113 |
+
assert total_count == len(ids), f'Expected {len(ids)} tensors, got {total_count}.'
|
| 114 |
+
log.info(f'Loaded {total_count} tensors from {data_path}.')
|
| 115 |
+
|
| 116 |
+
return mm_tensor
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def share_tensor_to_all(x: Optional[MemoryMappedTensor]) -> MemoryMappedTensor:
|
| 120 |
+
"""
|
| 121 |
+
x: the tensor to be shared; None if local_rank != 0
|
| 122 |
+
return: the shared tensor
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
# there is no need to share your stuff with anyone if you are alone; must be in memory
|
| 126 |
+
if world_size == 1:
|
| 127 |
+
return x
|
| 128 |
+
|
| 129 |
+
if local_rank == 0:
|
| 130 |
+
assert x is not None, 'x must not be None if local_rank == 0'
|
| 131 |
+
else:
|
| 132 |
+
assert x is None, 'x must be None if local_rank != 0'
|
| 133 |
+
|
| 134 |
+
if local_rank == 0:
|
| 135 |
+
filename = x.filename
|
| 136 |
+
meta_information = (filename, x.shape, x.dtype)
|
| 137 |
+
else:
|
| 138 |
+
meta_information = None
|
| 139 |
+
|
| 140 |
+
filename, data_shape, data_type = local_scatter_torch(meta_information)
|
| 141 |
+
if local_rank == 0:
|
| 142 |
+
data = x
|
| 143 |
+
else:
|
| 144 |
+
data = MemoryMappedTensor.from_filename(filename=filename,
|
| 145 |
+
dtype=data_type,
|
| 146 |
+
shape=data_shape)
|
| 147 |
+
|
| 148 |
+
return data
|
mmaudio/eval_utils.py
ADDED
|
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dataclasses
|
| 2 |
+
import logging
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from colorlog import ColoredFormatter
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torchvision.transforms import v2
|
| 11 |
+
|
| 12 |
+
from mmaudio.data.av_utils import ImageInfo, VideoInfo, read_frames, reencode_with_audio
|
| 13 |
+
from mmaudio.model.flow_matching import FlowMatching
|
| 14 |
+
from mmaudio.model.networks import MMAudio
|
| 15 |
+
from mmaudio.model.sequence_config import CONFIG_16K, CONFIG_44K, SequenceConfig
|
| 16 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 17 |
+
from mmaudio.utils.download_utils import download_model_if_needed
|
| 18 |
+
|
| 19 |
+
log = logging.getLogger()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclasses.dataclass
|
| 23 |
+
class ModelConfig:
|
| 24 |
+
model_name: str
|
| 25 |
+
model_path: Path
|
| 26 |
+
vae_path: Path
|
| 27 |
+
bigvgan_16k_path: Optional[Path]
|
| 28 |
+
mode: str
|
| 29 |
+
synchformer_ckpt: Path = Path('./ext_weights/synchformer_state_dict.pth')
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def seq_cfg(self) -> SequenceConfig:
|
| 33 |
+
if self.mode == '16k':
|
| 34 |
+
return CONFIG_16K
|
| 35 |
+
elif self.mode == '44k':
|
| 36 |
+
return CONFIG_44K
|
| 37 |
+
|
| 38 |
+
def download_if_needed(self):
|
| 39 |
+
download_model_if_needed(self.model_path)
|
| 40 |
+
download_model_if_needed(self.vae_path)
|
| 41 |
+
if self.bigvgan_16k_path is not None:
|
| 42 |
+
download_model_if_needed(self.bigvgan_16k_path)
|
| 43 |
+
download_model_if_needed(self.synchformer_ckpt)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
small_16k = ModelConfig(model_name='small_16k',
|
| 47 |
+
model_path=Path('./weights/mmaudio_small_16k.pth'),
|
| 48 |
+
vae_path=Path('./ext_weights/v1-16.pth'),
|
| 49 |
+
bigvgan_16k_path=Path('./ext_weights/best_netG.pt'),
|
| 50 |
+
mode='16k')
|
| 51 |
+
small_44k = ModelConfig(model_name='small_44k',
|
| 52 |
+
model_path=Path('./weights/mmaudio_small_44k.pth'),
|
| 53 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
| 54 |
+
bigvgan_16k_path=None,
|
| 55 |
+
mode='44k')
|
| 56 |
+
medium_44k = ModelConfig(model_name='medium_44k',
|
| 57 |
+
model_path=Path('./weights/mmaudio_medium_44k.pth'),
|
| 58 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
| 59 |
+
bigvgan_16k_path=None,
|
| 60 |
+
mode='44k')
|
| 61 |
+
large_44k = ModelConfig(model_name='large_44k',
|
| 62 |
+
model_path=Path('./weights/mmaudio_large_44k.pth'),
|
| 63 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
| 64 |
+
bigvgan_16k_path=None,
|
| 65 |
+
mode='44k')
|
| 66 |
+
large_44k_v2 = ModelConfig(model_name='large_44k_v2',
|
| 67 |
+
model_path=Path('./weights/mmaudio_large_44k_v2.pth'),
|
| 68 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
| 69 |
+
bigvgan_16k_path=None,
|
| 70 |
+
mode='44k')
|
| 71 |
+
all_model_cfg: dict[str, ModelConfig] = {
|
| 72 |
+
'small_16k': small_16k,
|
| 73 |
+
'small_44k': small_44k,
|
| 74 |
+
'medium_44k': medium_44k,
|
| 75 |
+
'large_44k': large_44k,
|
| 76 |
+
'large_44k_v2': large_44k_v2,
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def generate(
|
| 81 |
+
clip_video: Optional[torch.Tensor],
|
| 82 |
+
sync_video: Optional[torch.Tensor],
|
| 83 |
+
text: Optional[list[str]],
|
| 84 |
+
*,
|
| 85 |
+
negative_text: Optional[list[str]] = None,
|
| 86 |
+
feature_utils: FeaturesUtils,
|
| 87 |
+
net: MMAudio,
|
| 88 |
+
fm: FlowMatching,
|
| 89 |
+
rng: torch.Generator,
|
| 90 |
+
cfg_strength: float,
|
| 91 |
+
clip_batch_size_multiplier: int = 40,
|
| 92 |
+
sync_batch_size_multiplier: int = 40,
|
| 93 |
+
image_input: bool = False,
|
| 94 |
+
) -> torch.Tensor:
|
| 95 |
+
device = feature_utils.device
|
| 96 |
+
dtype = feature_utils.dtype
|
| 97 |
+
|
| 98 |
+
bs = len(text)
|
| 99 |
+
if clip_video is not None:
|
| 100 |
+
clip_video = clip_video.to(device, dtype, non_blocking=True)
|
| 101 |
+
clip_features = feature_utils.encode_video_with_clip(clip_video,
|
| 102 |
+
batch_size=bs *
|
| 103 |
+
clip_batch_size_multiplier)
|
| 104 |
+
if image_input:
|
| 105 |
+
clip_features = clip_features.expand(-1, net.clip_seq_len, -1)
|
| 106 |
+
else:
|
| 107 |
+
clip_features = net.get_empty_clip_sequence(bs)
|
| 108 |
+
|
| 109 |
+
if sync_video is not None and not image_input:
|
| 110 |
+
sync_video = sync_video.to(device, dtype, non_blocking=True)
|
| 111 |
+
sync_features = feature_utils.encode_video_with_sync(sync_video,
|
| 112 |
+
batch_size=bs *
|
| 113 |
+
sync_batch_size_multiplier)
|
| 114 |
+
else:
|
| 115 |
+
sync_features = net.get_empty_sync_sequence(bs)
|
| 116 |
+
|
| 117 |
+
if text is not None:
|
| 118 |
+
text_features = feature_utils.encode_text(text)
|
| 119 |
+
else:
|
| 120 |
+
text_features = net.get_empty_string_sequence(bs)
|
| 121 |
+
|
| 122 |
+
if negative_text is not None:
|
| 123 |
+
assert len(negative_text) == bs
|
| 124 |
+
negative_text_features = feature_utils.encode_text(negative_text)
|
| 125 |
+
else:
|
| 126 |
+
negative_text_features = net.get_empty_string_sequence(bs)
|
| 127 |
+
|
| 128 |
+
x0 = torch.randn(bs,
|
| 129 |
+
net.latent_seq_len,
|
| 130 |
+
net.latent_dim,
|
| 131 |
+
device=device,
|
| 132 |
+
dtype=dtype,
|
| 133 |
+
generator=rng)
|
| 134 |
+
preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features)
|
| 135 |
+
empty_conditions = net.get_empty_conditions(
|
| 136 |
+
bs, negative_text_features=negative_text_features if negative_text is not None else None)
|
| 137 |
+
|
| 138 |
+
cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
|
| 139 |
+
cfg_strength)
|
| 140 |
+
x1 = fm.to_data(cfg_ode_wrapper, x0)
|
| 141 |
+
x1 = net.unnormalize(x1)
|
| 142 |
+
spec = feature_utils.decode(x1)
|
| 143 |
+
audio = feature_utils.vocode(spec)
|
| 144 |
+
return audio
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
LOGFORMAT = "[%(log_color)s%(levelname)-8s%(reset)s]: %(log_color)s%(message)s%(reset)s"
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def setup_eval_logging(log_level: int = logging.INFO):
|
| 151 |
+
logging.root.setLevel(log_level)
|
| 152 |
+
formatter = ColoredFormatter(LOGFORMAT)
|
| 153 |
+
stream = logging.StreamHandler()
|
| 154 |
+
stream.setLevel(log_level)
|
| 155 |
+
stream.setFormatter(formatter)
|
| 156 |
+
log = logging.getLogger()
|
| 157 |
+
log.setLevel(log_level)
|
| 158 |
+
log.addHandler(stream)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
_CLIP_SIZE = 384
|
| 162 |
+
_CLIP_FPS = 8.0
|
| 163 |
+
|
| 164 |
+
_SYNC_SIZE = 224
|
| 165 |
+
_SYNC_FPS = 25.0
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def load_video(video_path: Path, duration_sec: float, load_all_frames: bool = True) -> VideoInfo:
|
| 169 |
+
|
| 170 |
+
clip_transform = v2.Compose([
|
| 171 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 172 |
+
v2.ToImage(),
|
| 173 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 174 |
+
])
|
| 175 |
+
|
| 176 |
+
sync_transform = v2.Compose([
|
| 177 |
+
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
|
| 178 |
+
v2.CenterCrop(_SYNC_SIZE),
|
| 179 |
+
v2.ToImage(),
|
| 180 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 181 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 182 |
+
])
|
| 183 |
+
|
| 184 |
+
output_frames, all_frames, orig_fps = read_frames(video_path,
|
| 185 |
+
list_of_fps=[_CLIP_FPS, _SYNC_FPS],
|
| 186 |
+
start_sec=0,
|
| 187 |
+
end_sec=duration_sec,
|
| 188 |
+
need_all_frames=load_all_frames)
|
| 189 |
+
|
| 190 |
+
clip_chunk, sync_chunk = output_frames
|
| 191 |
+
clip_chunk = torch.from_numpy(clip_chunk).permute(0, 3, 1, 2)
|
| 192 |
+
sync_chunk = torch.from_numpy(sync_chunk).permute(0, 3, 1, 2)
|
| 193 |
+
|
| 194 |
+
clip_frames = clip_transform(clip_chunk)
|
| 195 |
+
sync_frames = sync_transform(sync_chunk)
|
| 196 |
+
|
| 197 |
+
clip_length_sec = clip_frames.shape[0] / _CLIP_FPS
|
| 198 |
+
sync_length_sec = sync_frames.shape[0] / _SYNC_FPS
|
| 199 |
+
|
| 200 |
+
if clip_length_sec < duration_sec:
|
| 201 |
+
log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}')
|
| 202 |
+
log.warning(f'Truncating to {clip_length_sec:.2f} sec')
|
| 203 |
+
duration_sec = clip_length_sec
|
| 204 |
+
|
| 205 |
+
if sync_length_sec < duration_sec:
|
| 206 |
+
log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}')
|
| 207 |
+
log.warning(f'Truncating to {sync_length_sec:.2f} sec')
|
| 208 |
+
duration_sec = sync_length_sec
|
| 209 |
+
|
| 210 |
+
clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)]
|
| 211 |
+
sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)]
|
| 212 |
+
|
| 213 |
+
video_info = VideoInfo(
|
| 214 |
+
duration_sec=duration_sec,
|
| 215 |
+
fps=orig_fps,
|
| 216 |
+
clip_frames=clip_frames,
|
| 217 |
+
sync_frames=sync_frames,
|
| 218 |
+
all_frames=all_frames if load_all_frames else None,
|
| 219 |
+
)
|
| 220 |
+
return video_info
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def load_image(image_path: Path) -> VideoInfo:
|
| 224 |
+
clip_transform = v2.Compose([
|
| 225 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
| 226 |
+
v2.ToImage(),
|
| 227 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 228 |
+
])
|
| 229 |
+
|
| 230 |
+
sync_transform = v2.Compose([
|
| 231 |
+
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
|
| 232 |
+
v2.CenterCrop(_SYNC_SIZE),
|
| 233 |
+
v2.ToImage(),
|
| 234 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 235 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
| 236 |
+
])
|
| 237 |
+
|
| 238 |
+
frame = np.array(Image.open(image_path))
|
| 239 |
+
|
| 240 |
+
clip_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
|
| 241 |
+
sync_chunk = torch.from_numpy(frame).unsqueeze(0).permute(0, 3, 1, 2)
|
| 242 |
+
|
| 243 |
+
clip_frames = clip_transform(clip_chunk)
|
| 244 |
+
sync_frames = sync_transform(sync_chunk)
|
| 245 |
+
|
| 246 |
+
video_info = ImageInfo(
|
| 247 |
+
clip_frames=clip_frames,
|
| 248 |
+
sync_frames=sync_frames,
|
| 249 |
+
original_frame=frame,
|
| 250 |
+
)
|
| 251 |
+
return video_info
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def make_video(video_info: VideoInfo, output_path: Path, audio: torch.Tensor, sampling_rate: int):
|
| 255 |
+
reencode_with_audio(video_info, output_path, audio, sampling_rate)
|
mmaudio/ext/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
mmaudio/ext/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (162 Bytes). View file
|
|
|
mmaudio/ext/__pycache__/mel_converter.cpython-310.pyc
ADDED
|
Binary file (2.84 kB). View file
|
|
|
mmaudio/ext/__pycache__/rotary_embeddings.cpython-310.pyc
ADDED
|
Binary file (1.44 kB). View file
|
|
|
mmaudio/ext/autoencoder/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .autoencoder import AutoEncoderModule
|
mmaudio/ext/autoencoder/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (227 Bytes). View file
|
|
|
mmaudio/ext/autoencoder/__pycache__/autoencoder.cpython-310.pyc
ADDED
|
Binary file (2.11 kB). View file
|
|
|
mmaudio/ext/autoencoder/__pycache__/edm2_utils.cpython-310.pyc
ADDED
|
Binary file (4.65 kB). View file
|
|
|
mmaudio/ext/autoencoder/__pycache__/vae.cpython-310.pyc
ADDED
|
Binary file (12.2 kB). View file
|
|
|
mmaudio/ext/autoencoder/__pycache__/vae_modules.cpython-310.pyc
ADDED
|
Binary file (3.61 kB). View file
|
|
|
mmaudio/ext/autoencoder/autoencoder.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Literal, Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
from mmaudio.ext.autoencoder.vae import VAE, get_my_vae
|
| 7 |
+
from mmaudio.ext.bigvgan import BigVGAN
|
| 8 |
+
from mmaudio.ext.bigvgan_v2.bigvgan import BigVGAN as BigVGANv2
|
| 9 |
+
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class AutoEncoderModule(nn.Module):
|
| 13 |
+
|
| 14 |
+
def __init__(self,
|
| 15 |
+
*,
|
| 16 |
+
vae_ckpt_path,
|
| 17 |
+
vocoder_ckpt_path: Optional[str] = None,
|
| 18 |
+
mode: Literal['16k', '44k'],
|
| 19 |
+
need_vae_encoder: bool = True):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.vae: VAE = get_my_vae(mode).eval()
|
| 22 |
+
vae_state_dict = torch.load(vae_ckpt_path, weights_only=True, map_location='cpu')
|
| 23 |
+
self.vae.load_state_dict(vae_state_dict)
|
| 24 |
+
self.vae.remove_weight_norm()
|
| 25 |
+
|
| 26 |
+
if mode == '16k':
|
| 27 |
+
assert vocoder_ckpt_path is not None
|
| 28 |
+
self.vocoder = BigVGAN(vocoder_ckpt_path).eval()
|
| 29 |
+
elif mode == '44k':
|
| 30 |
+
self.vocoder = BigVGANv2.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x',
|
| 31 |
+
use_cuda_kernel=False)
|
| 32 |
+
self.vocoder.remove_weight_norm()
|
| 33 |
+
else:
|
| 34 |
+
raise ValueError(f'Unknown mode: {mode}')
|
| 35 |
+
|
| 36 |
+
for param in self.parameters():
|
| 37 |
+
param.requires_grad = False
|
| 38 |
+
|
| 39 |
+
if not need_vae_encoder:
|
| 40 |
+
del self.vae.encoder
|
| 41 |
+
|
| 42 |
+
@torch.inference_mode()
|
| 43 |
+
def encode(self, x: torch.Tensor) -> DiagonalGaussianDistribution:
|
| 44 |
+
return self.vae.encode(x)
|
| 45 |
+
|
| 46 |
+
@torch.inference_mode()
|
| 47 |
+
def decode(self, z: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
return self.vae.decode(z)
|
| 49 |
+
|
| 50 |
+
@torch.inference_mode()
|
| 51 |
+
def vocode(self, spec: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
return self.vocoder(spec)
|
mmaudio/ext/autoencoder/edm2_utils.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# This work is licensed under a Creative Commons
|
| 4 |
+
# Attribution-NonCommercial-ShareAlike 4.0 International License.
|
| 5 |
+
# You should have received a copy of the license along with this
|
| 6 |
+
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
|
| 7 |
+
"""Improved diffusion model architecture proposed in the paper
|
| 8 |
+
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
#----------------------------------------------------------------------------
|
| 14 |
+
# Variant of constant() that inherits dtype and device from the given
|
| 15 |
+
# reference tensor by default.
|
| 16 |
+
|
| 17 |
+
_constant_cache = dict()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
| 21 |
+
value = np.asarray(value)
|
| 22 |
+
if shape is not None:
|
| 23 |
+
shape = tuple(shape)
|
| 24 |
+
if dtype is None:
|
| 25 |
+
dtype = torch.get_default_dtype()
|
| 26 |
+
if device is None:
|
| 27 |
+
device = torch.device('cpu')
|
| 28 |
+
if memory_format is None:
|
| 29 |
+
memory_format = torch.contiguous_format
|
| 30 |
+
|
| 31 |
+
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
|
| 32 |
+
tensor = _constant_cache.get(key, None)
|
| 33 |
+
if tensor is None:
|
| 34 |
+
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
| 35 |
+
if shape is not None:
|
| 36 |
+
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
| 37 |
+
tensor = tensor.contiguous(memory_format=memory_format)
|
| 38 |
+
_constant_cache[key] = tensor
|
| 39 |
+
return tensor
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
|
| 43 |
+
if dtype is None:
|
| 44 |
+
dtype = ref.dtype
|
| 45 |
+
if device is None:
|
| 46 |
+
device = ref.device
|
| 47 |
+
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
#----------------------------------------------------------------------------
|
| 51 |
+
# Normalize given tensor to unit magnitude with respect to the given
|
| 52 |
+
# dimensions. Default = all dimensions except the first.
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def normalize(x, dim=None, eps=1e-4):
|
| 56 |
+
if dim is None:
|
| 57 |
+
dim = list(range(1, x.ndim))
|
| 58 |
+
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
| 59 |
+
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
|
| 60 |
+
return x / norm.to(x.dtype)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class Normalize(torch.nn.Module):
|
| 64 |
+
|
| 65 |
+
def __init__(self, dim=None, eps=1e-4):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.dim = dim
|
| 68 |
+
self.eps = eps
|
| 69 |
+
|
| 70 |
+
def forward(self, x):
|
| 71 |
+
return normalize(x, dim=self.dim, eps=self.eps)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
#----------------------------------------------------------------------------
|
| 75 |
+
# Upsample or downsample the given tensor with the given filter,
|
| 76 |
+
# or keep it as is.
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def resample(x, f=[1, 1], mode='keep'):
|
| 80 |
+
if mode == 'keep':
|
| 81 |
+
return x
|
| 82 |
+
f = np.float32(f)
|
| 83 |
+
assert f.ndim == 1 and len(f) % 2 == 0
|
| 84 |
+
pad = (len(f) - 1) // 2
|
| 85 |
+
f = f / f.sum()
|
| 86 |
+
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
|
| 87 |
+
f = const_like(x, f)
|
| 88 |
+
c = x.shape[1]
|
| 89 |
+
if mode == 'down':
|
| 90 |
+
return torch.nn.functional.conv2d(x,
|
| 91 |
+
f.tile([c, 1, 1, 1]),
|
| 92 |
+
groups=c,
|
| 93 |
+
stride=2,
|
| 94 |
+
padding=(pad, ))
|
| 95 |
+
assert mode == 'up'
|
| 96 |
+
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
|
| 97 |
+
groups=c,
|
| 98 |
+
stride=2,
|
| 99 |
+
padding=(pad, ))
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
#----------------------------------------------------------------------------
|
| 103 |
+
# Magnitude-preserving SiLU (Equation 81).
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def mp_silu(x):
|
| 107 |
+
return torch.nn.functional.silu(x) / 0.596
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class MPSiLU(torch.nn.Module):
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
return mp_silu(x)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
#----------------------------------------------------------------------------
|
| 117 |
+
# Magnitude-preserving sum (Equation 88).
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def mp_sum(a, b, t=0.5):
|
| 121 |
+
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
#----------------------------------------------------------------------------
|
| 125 |
+
# Magnitude-preserving concatenation (Equation 103).
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def mp_cat(a, b, dim=1, t=0.5):
|
| 129 |
+
Na = a.shape[dim]
|
| 130 |
+
Nb = b.shape[dim]
|
| 131 |
+
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
|
| 132 |
+
wa = C / np.sqrt(Na) * (1 - t)
|
| 133 |
+
wb = C / np.sqrt(Nb) * t
|
| 134 |
+
return torch.cat([wa * a, wb * b], dim=dim)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
#----------------------------------------------------------------------------
|
| 138 |
+
# Magnitude-preserving convolution or fully-connected layer (Equation 47)
|
| 139 |
+
# with force weight normalization (Equation 66).
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class MPConv1D(torch.nn.Module):
|
| 143 |
+
|
| 144 |
+
def __init__(self, in_channels, out_channels, kernel_size):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.out_channels = out_channels
|
| 147 |
+
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
|
| 148 |
+
|
| 149 |
+
self.weight_norm_removed = False
|
| 150 |
+
|
| 151 |
+
def forward(self, x, gain=1):
|
| 152 |
+
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
|
| 153 |
+
|
| 154 |
+
w = self.weight * gain
|
| 155 |
+
if w.ndim == 2:
|
| 156 |
+
return x @ w.t()
|
| 157 |
+
assert w.ndim == 3
|
| 158 |
+
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
|
| 159 |
+
|
| 160 |
+
def remove_weight_norm(self):
|
| 161 |
+
w = self.weight.to(torch.float32)
|
| 162 |
+
w = normalize(w) # traditional weight normalization
|
| 163 |
+
w = w / np.sqrt(w[0].numel())
|
| 164 |
+
w = w.to(self.weight.dtype)
|
| 165 |
+
self.weight.data.copy_(w)
|
| 166 |
+
|
| 167 |
+
self.weight_norm_removed = True
|
| 168 |
+
return self
|
mmaudio/ext/autoencoder/vae.py
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from mmaudio.ext.autoencoder.edm2_utils import MPConv1D
|
| 8 |
+
from mmaudio.ext.autoencoder.vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
|
| 9 |
+
Upsample1D, nonlinearity)
|
| 10 |
+
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
|
| 11 |
+
|
| 12 |
+
log = logging.getLogger()
|
| 13 |
+
|
| 14 |
+
DATA_MEAN_80D = [
|
| 15 |
+
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
|
| 16 |
+
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
|
| 17 |
+
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
|
| 18 |
+
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
|
| 19 |
+
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
|
| 20 |
+
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
|
| 21 |
+
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
|
| 22 |
+
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
DATA_STD_80D = [
|
| 26 |
+
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
|
| 27 |
+
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
|
| 28 |
+
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
|
| 29 |
+
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
|
| 30 |
+
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
|
| 31 |
+
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
|
| 32 |
+
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
DATA_MEAN_128D = [
|
| 36 |
+
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
|
| 37 |
+
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
|
| 38 |
+
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
|
| 39 |
+
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
|
| 40 |
+
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
|
| 41 |
+
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
|
| 42 |
+
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
|
| 43 |
+
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
|
| 44 |
+
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
|
| 45 |
+
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
|
| 46 |
+
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
|
| 47 |
+
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
|
| 48 |
+
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
DATA_STD_128D = [
|
| 52 |
+
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
|
| 53 |
+
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
|
| 54 |
+
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
|
| 55 |
+
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
|
| 56 |
+
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
|
| 57 |
+
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
|
| 58 |
+
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
|
| 59 |
+
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
|
| 60 |
+
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
|
| 61 |
+
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
|
| 62 |
+
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class VAE(nn.Module):
|
| 67 |
+
|
| 68 |
+
def __init__(
|
| 69 |
+
self,
|
| 70 |
+
*,
|
| 71 |
+
data_dim: int,
|
| 72 |
+
embed_dim: int,
|
| 73 |
+
hidden_dim: int,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
|
| 77 |
+
if data_dim == 80:
|
| 78 |
+
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32))
|
| 79 |
+
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32))
|
| 80 |
+
elif data_dim == 128:
|
| 81 |
+
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32))
|
| 82 |
+
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32))
|
| 83 |
+
|
| 84 |
+
self.data_mean = self.data_mean.view(1, -1, 1)
|
| 85 |
+
self.data_std = self.data_std.view(1, -1, 1)
|
| 86 |
+
|
| 87 |
+
self.encoder = Encoder1D(
|
| 88 |
+
dim=hidden_dim,
|
| 89 |
+
ch_mult=(1, 2, 4),
|
| 90 |
+
num_res_blocks=2,
|
| 91 |
+
attn_layers=[3],
|
| 92 |
+
down_layers=[0],
|
| 93 |
+
in_dim=data_dim,
|
| 94 |
+
embed_dim=embed_dim,
|
| 95 |
+
)
|
| 96 |
+
self.decoder = Decoder1D(
|
| 97 |
+
dim=hidden_dim,
|
| 98 |
+
ch_mult=(1, 2, 4),
|
| 99 |
+
num_res_blocks=2,
|
| 100 |
+
attn_layers=[3],
|
| 101 |
+
down_layers=[0],
|
| 102 |
+
in_dim=data_dim,
|
| 103 |
+
out_dim=data_dim,
|
| 104 |
+
embed_dim=embed_dim,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.embed_dim = embed_dim
|
| 108 |
+
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
|
| 109 |
+
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
|
| 110 |
+
|
| 111 |
+
self.initialize_weights()
|
| 112 |
+
|
| 113 |
+
def initialize_weights(self):
|
| 114 |
+
pass
|
| 115 |
+
|
| 116 |
+
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
|
| 117 |
+
if normalize:
|
| 118 |
+
x = self.normalize(x)
|
| 119 |
+
moments = self.encoder(x)
|
| 120 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 121 |
+
return posterior
|
| 122 |
+
|
| 123 |
+
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
|
| 124 |
+
dec = self.decoder(z)
|
| 125 |
+
if unnormalize:
|
| 126 |
+
dec = self.unnormalize(dec)
|
| 127 |
+
return dec
|
| 128 |
+
|
| 129 |
+
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
| 130 |
+
return (x - self.data_mean) / self.data_std
|
| 131 |
+
|
| 132 |
+
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
|
| 133 |
+
return x * self.data_std + self.data_mean
|
| 134 |
+
|
| 135 |
+
def forward(
|
| 136 |
+
self,
|
| 137 |
+
x: torch.Tensor,
|
| 138 |
+
sample_posterior: bool = True,
|
| 139 |
+
rng: Optional[torch.Generator] = None,
|
| 140 |
+
normalize: bool = True,
|
| 141 |
+
unnormalize: bool = True,
|
| 142 |
+
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
|
| 143 |
+
|
| 144 |
+
posterior = self.encode(x, normalize=normalize)
|
| 145 |
+
if sample_posterior:
|
| 146 |
+
z = posterior.sample(rng)
|
| 147 |
+
else:
|
| 148 |
+
z = posterior.mode()
|
| 149 |
+
dec = self.decode(z, unnormalize=unnormalize)
|
| 150 |
+
return dec, posterior
|
| 151 |
+
|
| 152 |
+
def load_weights(self, src_dict) -> None:
|
| 153 |
+
self.load_state_dict(src_dict, strict=True)
|
| 154 |
+
|
| 155 |
+
@property
|
| 156 |
+
def device(self) -> torch.device:
|
| 157 |
+
return next(self.parameters()).device
|
| 158 |
+
|
| 159 |
+
def get_last_layer(self):
|
| 160 |
+
return self.decoder.conv_out.weight
|
| 161 |
+
|
| 162 |
+
def remove_weight_norm(self):
|
| 163 |
+
for name, m in self.named_modules():
|
| 164 |
+
if isinstance(m, MPConv1D):
|
| 165 |
+
m.remove_weight_norm()
|
| 166 |
+
log.debug(f"Removed weight norm from {name}")
|
| 167 |
+
return self
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class Encoder1D(nn.Module):
|
| 171 |
+
|
| 172 |
+
def __init__(self,
|
| 173 |
+
*,
|
| 174 |
+
dim: int,
|
| 175 |
+
ch_mult: tuple[int] = (1, 2, 4, 8),
|
| 176 |
+
num_res_blocks: int,
|
| 177 |
+
attn_layers: list[int] = [],
|
| 178 |
+
down_layers: list[int] = [],
|
| 179 |
+
resamp_with_conv: bool = True,
|
| 180 |
+
in_dim: int,
|
| 181 |
+
embed_dim: int,
|
| 182 |
+
double_z: bool = True,
|
| 183 |
+
kernel_size: int = 3,
|
| 184 |
+
clip_act: float = 256.0):
|
| 185 |
+
super().__init__()
|
| 186 |
+
self.dim = dim
|
| 187 |
+
self.num_layers = len(ch_mult)
|
| 188 |
+
self.num_res_blocks = num_res_blocks
|
| 189 |
+
self.in_channels = in_dim
|
| 190 |
+
self.clip_act = clip_act
|
| 191 |
+
self.down_layers = down_layers
|
| 192 |
+
self.attn_layers = attn_layers
|
| 193 |
+
self.conv_in = MPConv1D(in_dim, self.dim, kernel_size=kernel_size)
|
| 194 |
+
|
| 195 |
+
in_ch_mult = (1, ) + tuple(ch_mult)
|
| 196 |
+
self.in_ch_mult = in_ch_mult
|
| 197 |
+
# downsampling
|
| 198 |
+
self.down = nn.ModuleList()
|
| 199 |
+
for i_level in range(self.num_layers):
|
| 200 |
+
block = nn.ModuleList()
|
| 201 |
+
attn = nn.ModuleList()
|
| 202 |
+
block_in = dim * in_ch_mult[i_level]
|
| 203 |
+
block_out = dim * ch_mult[i_level]
|
| 204 |
+
for i_block in range(self.num_res_blocks):
|
| 205 |
+
block.append(
|
| 206 |
+
ResnetBlock1D(in_dim=block_in,
|
| 207 |
+
out_dim=block_out,
|
| 208 |
+
kernel_size=kernel_size,
|
| 209 |
+
use_norm=True))
|
| 210 |
+
block_in = block_out
|
| 211 |
+
if i_level in attn_layers:
|
| 212 |
+
attn.append(AttnBlock1D(block_in))
|
| 213 |
+
down = nn.Module()
|
| 214 |
+
down.block = block
|
| 215 |
+
down.attn = attn
|
| 216 |
+
if i_level in down_layers:
|
| 217 |
+
down.downsample = Downsample1D(block_in, resamp_with_conv)
|
| 218 |
+
self.down.append(down)
|
| 219 |
+
|
| 220 |
+
# middle
|
| 221 |
+
self.mid = nn.Module()
|
| 222 |
+
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
|
| 223 |
+
out_dim=block_in,
|
| 224 |
+
kernel_size=kernel_size,
|
| 225 |
+
use_norm=True)
|
| 226 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
| 227 |
+
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
|
| 228 |
+
out_dim=block_in,
|
| 229 |
+
kernel_size=kernel_size,
|
| 230 |
+
use_norm=True)
|
| 231 |
+
|
| 232 |
+
# end
|
| 233 |
+
self.conv_out = MPConv1D(block_in,
|
| 234 |
+
2 * embed_dim if double_z else embed_dim,
|
| 235 |
+
kernel_size=kernel_size)
|
| 236 |
+
|
| 237 |
+
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
| 238 |
+
|
| 239 |
+
def forward(self, x):
|
| 240 |
+
|
| 241 |
+
# downsampling
|
| 242 |
+
hs = [self.conv_in(x)]
|
| 243 |
+
for i_level in range(self.num_layers):
|
| 244 |
+
for i_block in range(self.num_res_blocks):
|
| 245 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
| 246 |
+
if len(self.down[i_level].attn) > 0:
|
| 247 |
+
h = self.down[i_level].attn[i_block](h)
|
| 248 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
| 249 |
+
hs.append(h)
|
| 250 |
+
if i_level in self.down_layers:
|
| 251 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 252 |
+
|
| 253 |
+
# middle
|
| 254 |
+
h = hs[-1]
|
| 255 |
+
h = self.mid.block_1(h)
|
| 256 |
+
h = self.mid.attn_1(h)
|
| 257 |
+
h = self.mid.block_2(h)
|
| 258 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
| 259 |
+
|
| 260 |
+
# end
|
| 261 |
+
h = nonlinearity(h)
|
| 262 |
+
h = self.conv_out(h, gain=(self.learnable_gain + 1))
|
| 263 |
+
return h
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
class Decoder1D(nn.Module):
|
| 267 |
+
|
| 268 |
+
def __init__(self,
|
| 269 |
+
*,
|
| 270 |
+
dim: int,
|
| 271 |
+
out_dim: int,
|
| 272 |
+
ch_mult: tuple[int] = (1, 2, 4, 8),
|
| 273 |
+
num_res_blocks: int,
|
| 274 |
+
attn_layers: list[int] = [],
|
| 275 |
+
down_layers: list[int] = [],
|
| 276 |
+
kernel_size: int = 3,
|
| 277 |
+
resamp_with_conv: bool = True,
|
| 278 |
+
in_dim: int,
|
| 279 |
+
embed_dim: int,
|
| 280 |
+
clip_act: float = 256.0):
|
| 281 |
+
super().__init__()
|
| 282 |
+
self.ch = dim
|
| 283 |
+
self.num_layers = len(ch_mult)
|
| 284 |
+
self.num_res_blocks = num_res_blocks
|
| 285 |
+
self.in_channels = in_dim
|
| 286 |
+
self.clip_act = clip_act
|
| 287 |
+
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
|
| 288 |
+
|
| 289 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 290 |
+
block_in = dim * ch_mult[self.num_layers - 1]
|
| 291 |
+
|
| 292 |
+
# z to block_in
|
| 293 |
+
self.conv_in = MPConv1D(embed_dim, block_in, kernel_size=kernel_size)
|
| 294 |
+
|
| 295 |
+
# middle
|
| 296 |
+
self.mid = nn.Module()
|
| 297 |
+
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
| 298 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
| 299 |
+
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
| 300 |
+
|
| 301 |
+
# upsampling
|
| 302 |
+
self.up = nn.ModuleList()
|
| 303 |
+
for i_level in reversed(range(self.num_layers)):
|
| 304 |
+
block = nn.ModuleList()
|
| 305 |
+
attn = nn.ModuleList()
|
| 306 |
+
block_out = dim * ch_mult[i_level]
|
| 307 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 308 |
+
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
|
| 309 |
+
block_in = block_out
|
| 310 |
+
if i_level in attn_layers:
|
| 311 |
+
attn.append(AttnBlock1D(block_in))
|
| 312 |
+
up = nn.Module()
|
| 313 |
+
up.block = block
|
| 314 |
+
up.attn = attn
|
| 315 |
+
if i_level in self.down_layers:
|
| 316 |
+
up.upsample = Upsample1D(block_in, resamp_with_conv)
|
| 317 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 318 |
+
|
| 319 |
+
# end
|
| 320 |
+
self.conv_out = MPConv1D(block_in, out_dim, kernel_size=kernel_size)
|
| 321 |
+
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
| 322 |
+
|
| 323 |
+
def forward(self, z):
|
| 324 |
+
# z to block_in
|
| 325 |
+
h = self.conv_in(z)
|
| 326 |
+
|
| 327 |
+
# middle
|
| 328 |
+
h = self.mid.block_1(h)
|
| 329 |
+
h = self.mid.attn_1(h)
|
| 330 |
+
h = self.mid.block_2(h)
|
| 331 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
| 332 |
+
|
| 333 |
+
# upsampling
|
| 334 |
+
for i_level in reversed(range(self.num_layers)):
|
| 335 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 336 |
+
h = self.up[i_level].block[i_block](h)
|
| 337 |
+
if len(self.up[i_level].attn) > 0:
|
| 338 |
+
h = self.up[i_level].attn[i_block](h)
|
| 339 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
| 340 |
+
if i_level in self.down_layers:
|
| 341 |
+
h = self.up[i_level].upsample(h)
|
| 342 |
+
|
| 343 |
+
h = nonlinearity(h)
|
| 344 |
+
h = self.conv_out(h, gain=(self.learnable_gain + 1))
|
| 345 |
+
return h
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def VAE_16k(**kwargs) -> VAE:
|
| 349 |
+
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def VAE_44k(**kwargs) -> VAE:
|
| 353 |
+
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
def get_my_vae(name: str, **kwargs) -> VAE:
|
| 357 |
+
if name == '16k':
|
| 358 |
+
return VAE_16k(**kwargs)
|
| 359 |
+
if name == '44k':
|
| 360 |
+
return VAE_44k(**kwargs)
|
| 361 |
+
raise ValueError(f'Unknown model: {name}')
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
if __name__ == '__main__':
|
| 365 |
+
network = get_my_vae('standard')
|
| 366 |
+
|
| 367 |
+
# print the number of parameters in terms of millions
|
| 368 |
+
num_params = sum(p.numel() for p in network.parameters()) / 1e6
|
| 369 |
+
print(f'Number of parameters: {num_params:.2f}M')
|
mmaudio/ext/autoencoder/vae_modules.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
|
| 6 |
+
from mmaudio.ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def nonlinearity(x):
|
| 10 |
+
# swish
|
| 11 |
+
return mp_silu(x)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ResnetBlock1D(nn.Module):
|
| 15 |
+
|
| 16 |
+
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.in_dim = in_dim
|
| 19 |
+
out_dim = in_dim if out_dim is None else out_dim
|
| 20 |
+
self.out_dim = out_dim
|
| 21 |
+
self.use_conv_shortcut = conv_shortcut
|
| 22 |
+
self.use_norm = use_norm
|
| 23 |
+
|
| 24 |
+
self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
|
| 25 |
+
self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size)
|
| 26 |
+
if self.in_dim != self.out_dim:
|
| 27 |
+
if self.use_conv_shortcut:
|
| 28 |
+
self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
|
| 29 |
+
else:
|
| 30 |
+
self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1)
|
| 31 |
+
|
| 32 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 33 |
+
|
| 34 |
+
# pixel norm
|
| 35 |
+
if self.use_norm:
|
| 36 |
+
x = normalize(x, dim=1)
|
| 37 |
+
|
| 38 |
+
h = x
|
| 39 |
+
h = nonlinearity(h)
|
| 40 |
+
h = self.conv1(h)
|
| 41 |
+
|
| 42 |
+
h = nonlinearity(h)
|
| 43 |
+
h = self.conv2(h)
|
| 44 |
+
|
| 45 |
+
if self.in_dim != self.out_dim:
|
| 46 |
+
if self.use_conv_shortcut:
|
| 47 |
+
x = self.conv_shortcut(x)
|
| 48 |
+
else:
|
| 49 |
+
x = self.nin_shortcut(x)
|
| 50 |
+
|
| 51 |
+
return mp_sum(x, h, t=0.3)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class AttnBlock1D(nn.Module):
|
| 55 |
+
|
| 56 |
+
def __init__(self, in_channels, num_heads=1):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.in_channels = in_channels
|
| 59 |
+
|
| 60 |
+
self.num_heads = num_heads
|
| 61 |
+
self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1)
|
| 62 |
+
self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1)
|
| 63 |
+
|
| 64 |
+
def forward(self, x):
|
| 65 |
+
h = x
|
| 66 |
+
y = self.qkv(h)
|
| 67 |
+
y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1])
|
| 68 |
+
q, k, v = normalize(y, dim=2).unbind(3)
|
| 69 |
+
|
| 70 |
+
q = rearrange(q, 'b h c l -> b h l c')
|
| 71 |
+
k = rearrange(k, 'b h c l -> b h l c')
|
| 72 |
+
v = rearrange(v, 'b h c l -> b h l c')
|
| 73 |
+
|
| 74 |
+
h = F.scaled_dot_product_attention(q, k, v)
|
| 75 |
+
h = rearrange(h, 'b h l c -> b (h c) l')
|
| 76 |
+
|
| 77 |
+
h = self.proj_out(h)
|
| 78 |
+
|
| 79 |
+
return mp_sum(x, h, t=0.3)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Upsample1D(nn.Module):
|
| 83 |
+
|
| 84 |
+
def __init__(self, in_channels, with_conv):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.with_conv = with_conv
|
| 87 |
+
if self.with_conv:
|
| 88 |
+
self.conv = MPConv1D(in_channels, in_channels, kernel_size=3)
|
| 89 |
+
|
| 90 |
+
def forward(self, x):
|
| 91 |
+
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
|
| 92 |
+
if self.with_conv:
|
| 93 |
+
x = self.conv(x)
|
| 94 |
+
return x
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class Downsample1D(nn.Module):
|
| 98 |
+
|
| 99 |
+
def __init__(self, in_channels, with_conv):
|
| 100 |
+
super().__init__()
|
| 101 |
+
self.with_conv = with_conv
|
| 102 |
+
if self.with_conv:
|
| 103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 104 |
+
self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1)
|
| 105 |
+
self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1)
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
|
| 109 |
+
if self.with_conv:
|
| 110 |
+
x = self.conv1(x)
|
| 111 |
+
|
| 112 |
+
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
| 113 |
+
|
| 114 |
+
if self.with_conv:
|
| 115 |
+
x = self.conv2(x)
|
| 116 |
+
|
| 117 |
+
return x
|
mmaudio/ext/bigvgan/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2022 NVIDIA CORPORATION.
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
mmaudio/ext/bigvgan/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .bigvgan import BigVGAN
|
mmaudio/ext/bigvgan/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (209 Bytes). View file
|
|
|
mmaudio/ext/bigvgan/__pycache__/activations.cpython-310.pyc
ADDED
|
Binary file (4.04 kB). View file
|
|
|
mmaudio/ext/bigvgan/__pycache__/bigvgan.cpython-310.pyc
ADDED
|
Binary file (1.43 kB). View file
|
|
|
mmaudio/ext/bigvgan/__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (5.78 kB). View file
|
|
|
mmaudio/ext/bigvgan/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (1.16 kB). View file
|
|
|
mmaudio/ext/bigvgan/activations.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
| 2 |
+
# LICENSE is in incl_licenses directory.
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn, sin, pow
|
| 6 |
+
from torch.nn import Parameter
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Snake(nn.Module):
|
| 10 |
+
'''
|
| 11 |
+
Implementation of a sine-based periodic activation function
|
| 12 |
+
Shape:
|
| 13 |
+
- Input: (B, C, T)
|
| 14 |
+
- Output: (B, C, T), same shape as the input
|
| 15 |
+
Parameters:
|
| 16 |
+
- alpha - trainable parameter
|
| 17 |
+
References:
|
| 18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
| 19 |
+
https://arxiv.org/abs/2006.08195
|
| 20 |
+
Examples:
|
| 21 |
+
>>> a1 = snake(256)
|
| 22 |
+
>>> x = torch.randn(256)
|
| 23 |
+
>>> x = a1(x)
|
| 24 |
+
'''
|
| 25 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
| 26 |
+
'''
|
| 27 |
+
Initialization.
|
| 28 |
+
INPUT:
|
| 29 |
+
- in_features: shape of the input
|
| 30 |
+
- alpha: trainable parameter
|
| 31 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
| 32 |
+
alpha will be trained along with the rest of your model.
|
| 33 |
+
'''
|
| 34 |
+
super(Snake, self).__init__()
|
| 35 |
+
self.in_features = in_features
|
| 36 |
+
|
| 37 |
+
# initialize alpha
|
| 38 |
+
self.alpha_logscale = alpha_logscale
|
| 39 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
| 40 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
| 41 |
+
else: # linear scale alphas initialized to ones
|
| 42 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
| 43 |
+
|
| 44 |
+
self.alpha.requires_grad = alpha_trainable
|
| 45 |
+
|
| 46 |
+
self.no_div_by_zero = 0.000000001
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
'''
|
| 50 |
+
Forward pass of the function.
|
| 51 |
+
Applies the function to the input elementwise.
|
| 52 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
| 53 |
+
'''
|
| 54 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
| 55 |
+
if self.alpha_logscale:
|
| 56 |
+
alpha = torch.exp(alpha)
|
| 57 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
| 58 |
+
|
| 59 |
+
return x
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SnakeBeta(nn.Module):
|
| 63 |
+
'''
|
| 64 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
| 65 |
+
Shape:
|
| 66 |
+
- Input: (B, C, T)
|
| 67 |
+
- Output: (B, C, T), same shape as the input
|
| 68 |
+
Parameters:
|
| 69 |
+
- alpha - trainable parameter that controls frequency
|
| 70 |
+
- beta - trainable parameter that controls magnitude
|
| 71 |
+
References:
|
| 72 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
| 73 |
+
https://arxiv.org/abs/2006.08195
|
| 74 |
+
Examples:
|
| 75 |
+
>>> a1 = snakebeta(256)
|
| 76 |
+
>>> x = torch.randn(256)
|
| 77 |
+
>>> x = a1(x)
|
| 78 |
+
'''
|
| 79 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
| 80 |
+
'''
|
| 81 |
+
Initialization.
|
| 82 |
+
INPUT:
|
| 83 |
+
- in_features: shape of the input
|
| 84 |
+
- alpha - trainable parameter that controls frequency
|
| 85 |
+
- beta - trainable parameter that controls magnitude
|
| 86 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
| 87 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
| 88 |
+
alpha will be trained along with the rest of your model.
|
| 89 |
+
'''
|
| 90 |
+
super(SnakeBeta, self).__init__()
|
| 91 |
+
self.in_features = in_features
|
| 92 |
+
|
| 93 |
+
# initialize alpha
|
| 94 |
+
self.alpha_logscale = alpha_logscale
|
| 95 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
| 96 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
| 97 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
| 98 |
+
else: # linear scale alphas initialized to ones
|
| 99 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
| 100 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
| 101 |
+
|
| 102 |
+
self.alpha.requires_grad = alpha_trainable
|
| 103 |
+
self.beta.requires_grad = alpha_trainable
|
| 104 |
+
|
| 105 |
+
self.no_div_by_zero = 0.000000001
|
| 106 |
+
|
| 107 |
+
def forward(self, x):
|
| 108 |
+
'''
|
| 109 |
+
Forward pass of the function.
|
| 110 |
+
Applies the function to the input elementwise.
|
| 111 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
| 112 |
+
'''
|
| 113 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
| 114 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
| 115 |
+
if self.alpha_logscale:
|
| 116 |
+
alpha = torch.exp(alpha)
|
| 117 |
+
beta = torch.exp(beta)
|
| 118 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
| 119 |
+
|
| 120 |
+
return x
|
mmaudio/ext/bigvgan/alias_free_torch/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
| 2 |
+
# LICENSE is in incl_licenses directory.
|
| 3 |
+
|
| 4 |
+
from .filter import *
|
| 5 |
+
from .resample import *
|
| 6 |
+
from .act import *
|
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (245 Bytes). View file
|
|
|
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/act.cpython-310.pyc
ADDED
|
Binary file (1.08 kB). View file
|
|
|
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/filter.cpython-310.pyc
ADDED
|
Binary file (2.66 kB). View file
|
|
|
mmaudio/ext/bigvgan/alias_free_torch/__pycache__/resample.cpython-310.pyc
ADDED
|
Binary file (1.93 kB). View file
|
|
|