Create char_tokenizer.py
Browse files- char_tokenizer.py +162 -0
char_tokenizer.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copypasted from
|
| 3 |
+
https://huggingface.co/IlyaGusev/ru-word-stress-transformer/blob/main/char_tokenizer.py
|
| 4 |
+
with Apache 2.0 license
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from typing import Optional, Tuple, List
|
| 9 |
+
from collections import OrderedDict
|
| 10 |
+
|
| 11 |
+
from torch.utils.data import Dataset
|
| 12 |
+
from transformers import PreTrainedTokenizer, AutoTokenizer
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_vocab(vocab_file):
|
| 16 |
+
vocab = OrderedDict()
|
| 17 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 18 |
+
tokens = reader.readlines()
|
| 19 |
+
for index, token in enumerate(tokens):
|
| 20 |
+
token = token.rstrip("\n")
|
| 21 |
+
vocab[token] = index
|
| 22 |
+
return vocab
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class CharTokenizer(PreTrainedTokenizer):
|
| 26 |
+
vocab_files_names = {"vocab_file": "vocab.txt"}
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
vocab_file=None,
|
| 31 |
+
pad_token="[pad]",
|
| 32 |
+
unk_token="[unk]",
|
| 33 |
+
bos_token="[bos]",
|
| 34 |
+
eos_token="[eos]",
|
| 35 |
+
cls_token="[cls]",
|
| 36 |
+
sep_token="[sep]",
|
| 37 |
+
mask_token="[mask]",
|
| 38 |
+
space_token="▁",
|
| 39 |
+
do_lower_case=False,
|
| 40 |
+
*args,
|
| 41 |
+
**kwargs
|
| 42 |
+
):
|
| 43 |
+
if not vocab_file or not os.path.isfile(vocab_file):
|
| 44 |
+
self.vocab = OrderedDict()
|
| 45 |
+
self.ids_to_tokens = OrderedDict()
|
| 46 |
+
else:
|
| 47 |
+
self.vocab = load_vocab(vocab_file)
|
| 48 |
+
self.ids_to_tokens = OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
| 49 |
+
|
| 50 |
+
super().__init__(
|
| 51 |
+
pad_token=pad_token,
|
| 52 |
+
unk_token=unk_token,
|
| 53 |
+
bos_token=bos_token,
|
| 54 |
+
eos_token=eos_token,
|
| 55 |
+
cls_token=cls_token,
|
| 56 |
+
mask_token=mask_token,
|
| 57 |
+
do_lower_case=do_lower_case,
|
| 58 |
+
**kwargs
|
| 59 |
+
)
|
| 60 |
+
self.do_lower_case = do_lower_case
|
| 61 |
+
self.space_token = space_token
|
| 62 |
+
|
| 63 |
+
def train(self, file_path):
|
| 64 |
+
vocab = set()
|
| 65 |
+
with open(file_path) as r:
|
| 66 |
+
for line in r:
|
| 67 |
+
word = line.strip()
|
| 68 |
+
if self.do_lower_case:
|
| 69 |
+
word = word.lower()
|
| 70 |
+
vocab |= set(word)
|
| 71 |
+
vocab = list(vocab)
|
| 72 |
+
vocab.sort()
|
| 73 |
+
special_tokens = [self.pad_token, self.unk_token, self.bos_token, self.eos_token]
|
| 74 |
+
vocab = special_tokens + vocab
|
| 75 |
+
|
| 76 |
+
for i, ch in enumerate(vocab):
|
| 77 |
+
self.vocab[ch] = i
|
| 78 |
+
self.ids_to_tokens = vocab
|
| 79 |
+
|
| 80 |
+
@property
|
| 81 |
+
def vocab_size(self):
|
| 82 |
+
return len(self.vocab)
|
| 83 |
+
|
| 84 |
+
def get_vocab(self):
|
| 85 |
+
return self.vocab
|
| 86 |
+
|
| 87 |
+
def _convert_token_to_id(self, token):
|
| 88 |
+
if self.do_lower_case:
|
| 89 |
+
token = token.lower()
|
| 90 |
+
return self.vocab.get(token, self.vocab[self.unk_token])
|
| 91 |
+
|
| 92 |
+
def _convert_id_to_token(self, index):
|
| 93 |
+
return self.ids_to_tokens[index]
|
| 94 |
+
|
| 95 |
+
def prepare_for_tokenization(
|
| 96 |
+
self, text, is_split_into_words: bool = False, spaces=0, **kwargs
|
| 97 |
+
):
|
| 98 |
+
if spaces:
|
| 99 |
+
pad = self.space_token * spaces
|
| 100 |
+
text = pad + pad.join(text) + pad
|
| 101 |
+
return (text, kwargs)
|
| 102 |
+
|
| 103 |
+
def _tokenize(self, text, spaces=0):
|
| 104 |
+
if self.do_lower_case:
|
| 105 |
+
text = text.lower()
|
| 106 |
+
return list(text)
|
| 107 |
+
|
| 108 |
+
def convert_tokens_to_string(self, tokens):
|
| 109 |
+
return "".join(tokens)
|
| 110 |
+
|
| 111 |
+
def build_inputs_with_special_tokens(
|
| 112 |
+
self,
|
| 113 |
+
token_ids_0: List[int],
|
| 114 |
+
token_ids_1: Optional[List[int]] = None
|
| 115 |
+
) -> List[int]:
|
| 116 |
+
bos = [self.bos_token_id]
|
| 117 |
+
eos = [self.eos_token_id]
|
| 118 |
+
return bos + token_ids_0 + eos
|
| 119 |
+
|
| 120 |
+
def get_special_tokens_mask(
|
| 121 |
+
self,
|
| 122 |
+
token_ids_0: List[int],
|
| 123 |
+
token_ids_1: Optional[List[int]] = None
|
| 124 |
+
) -> List[int]:
|
| 125 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
| 126 |
+
|
| 127 |
+
def create_token_type_ids_from_sequences(
|
| 128 |
+
self,
|
| 129 |
+
token_ids_0: List[int],
|
| 130 |
+
token_ids_1: Optional[List[int]] = None
|
| 131 |
+
) -> List[int]:
|
| 132 |
+
return (len(token_ids_0) + 2) * [0]
|
| 133 |
+
|
| 134 |
+
def save_vocabulary(
|
| 135 |
+
self,
|
| 136 |
+
save_directory: str,
|
| 137 |
+
filename_prefix: Optional[str] = None
|
| 138 |
+
) -> Tuple[str]:
|
| 139 |
+
assert os.path.isdir(save_directory)
|
| 140 |
+
vocab_file = os.path.join(
|
| 141 |
+
save_directory,
|
| 142 |
+
(filename_prefix + "-" if filename_prefix else "") +
|
| 143 |
+
self.vocab_files_names["vocab_file"]
|
| 144 |
+
)
|
| 145 |
+
index = 0
|
| 146 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
| 147 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
| 148 |
+
assert index == token_index
|
| 149 |
+
writer.write(token + "\n")
|
| 150 |
+
index += 1
|
| 151 |
+
return (vocab_file,)
|
| 152 |
+
|
| 153 |
+
def clean_up_tokenization(self, text, space='▁'):
|
| 154 |
+
res = []
|
| 155 |
+
prev = space
|
| 156 |
+
for c in text:
|
| 157 |
+
if c != prev and c != space:
|
| 158 |
+
res.append(c)
|
| 159 |
+
prev = c
|
| 160 |
+
return ''.join(res)
|
| 161 |
+
|
| 162 |
+
AutoTokenizer.register("char_tokenizer", CharTokenizer)
|