--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - accuracy - rouge model-index: - name: 8a6cfd3a5b44ec8ad4a1399b8111c2d7 results: [] --- # 8a6cfd3a5b44ec8ad4a1399b8111c2d7 This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set: - Loss: 0.6513 - Data Size: 1.0 - Epoch Runtime: 8.1961 - Accuracy: 0.7783 - F1 Macro: 0.7220 - Rouge1: 0.7783 - Rouge2: 0.0 - Rougel: 0.7783 - Rougelsum: 0.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:|:------:|:------:|:------:|:---------:| | No log | 0 | 0 | 0.7325 | 0 | 0.8980 | 0.3115 | 0.2375 | 0.3105 | 0.0 | 0.3115 | 0.3115 | | No log | 1 | 267 | 0.6273 | 0.0078 | 1.4091 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 2 | 534 | 0.6784 | 0.0156 | 1.2061 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 3 | 801 | 0.6180 | 0.0312 | 1.3246 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | No log | 4 | 1068 | 0.6193 | 0.0625 | 1.6425 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 | | 0.0364 | 5 | 1335 | 0.6810 | 0.125 | 2.2565 | 0.6895 | 0.4111 | 0.6904 | 0.0 | 0.6895 | 0.6895 | | 0.5377 | 6 | 1602 | 0.5564 | 0.25 | 3.0908 | 0.7178 | 0.5519 | 0.7178 | 0.0 | 0.7178 | 0.7178 | | 0.4537 | 7 | 1869 | 0.5744 | 0.5 | 4.7843 | 0.7383 | 0.5958 | 0.7393 | 0.0 | 0.7383 | 0.7383 | | 0.3558 | 8.0 | 2136 | 0.5633 | 1.0 | 8.4360 | 0.7598 | 0.6593 | 0.7607 | 0.0 | 0.7598 | 0.7598 | | 0.2181 | 9.0 | 2403 | 0.7488 | 1.0 | 8.3009 | 0.7637 | 0.6865 | 0.7637 | 0.0 | 0.7637 | 0.7637 | | 0.1705 | 10.0 | 2670 | 0.6513 | 1.0 | 8.1961 | 0.7783 | 0.7220 | 0.7783 | 0.0 | 0.7783 | 0.7783 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.3.0 - Tokenizers 0.22.1