Christina Theodoris
commited on
Commit
·
088ea6e
1
Parent(s):
f0de016
Add data collator for cell classification and example for cell classification
Browse files
examples/cell_classification.ipynb
ADDED
|
@@ -0,0 +1,1954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "234afff3",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"## Geneformer Fine-Tuning for Cell Annotation Application"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 2,
|
| 14 |
+
"id": "1cbe6178-ea4d-478a-80a8-65ffaa4c1820",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"import os\n",
|
| 19 |
+
"GPU_NUMBER = [0]\n",
|
| 20 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \",\".join([str(s) for s in GPU_NUMBER])\n",
|
| 21 |
+
"os.environ[\"NCCL_DEBUG\"] = \"INFO\""
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 3,
|
| 27 |
+
"id": "a9885d9f-00ac-4c84-b6a3-b7b648a90f0f",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"outputs": [],
|
| 30 |
+
"source": [
|
| 31 |
+
"# imports\n",
|
| 32 |
+
"from collections import Counter\n",
|
| 33 |
+
"import datetime\n",
|
| 34 |
+
"import pickle\n",
|
| 35 |
+
"import subprocess\n",
|
| 36 |
+
"import seaborn as sns; sns.set()\n",
|
| 37 |
+
"from datasets import load_from_disk\n",
|
| 38 |
+
"from sklearn.metrics import accuracy_score, f1_score\n",
|
| 39 |
+
"from transformers import BertForSequenceClassification\n",
|
| 40 |
+
"from transformers import Trainer\n",
|
| 41 |
+
"from transformers.training_args import TrainingArguments\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"from geneformer import DataCollatorForCellClassification"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "markdown",
|
| 48 |
+
"id": "68bd3b98-5409-4105-b7af-f1ff64ea6a72",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"source": [
|
| 51 |
+
"## Prepare training and evaluation datasets"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": 15,
|
| 57 |
+
"id": "5735f1b7-7595-4a02-be17-2c5b970ad81a",
|
| 58 |
+
"metadata": {},
|
| 59 |
+
"outputs": [],
|
| 60 |
+
"source": [
|
| 61 |
+
"# load train dataset (includes all tissues)\n",
|
| 62 |
+
"train_dataset=load_from_disk(\"/path/to/cell_type_train_data.dataset\")"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"cell_type": "code",
|
| 67 |
+
"execution_count": 17,
|
| 68 |
+
"id": "60eb8b0b-03ba-4065-98e3-0e424a9174ad",
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"outputs": [],
|
| 71 |
+
"source": [
|
| 72 |
+
"# load evaluation dataset (includes all tissues)\n",
|
| 73 |
+
"eval_dataset=load_from_disk(\"/path/to/cell_type_test_data.dataset\")"
|
| 74 |
+
]
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"cell_type": "code",
|
| 78 |
+
"execution_count": null,
|
| 79 |
+
"id": "a4297a02-4c4c-434c-ae55-3387a0b239b5",
|
| 80 |
+
"metadata": {
|
| 81 |
+
"collapsed": true,
|
| 82 |
+
"jupyter": {
|
| 83 |
+
"outputs_hidden": true
|
| 84 |
+
},
|
| 85 |
+
"tags": []
|
| 86 |
+
},
|
| 87 |
+
"outputs": [],
|
| 88 |
+
"source": [
|
| 89 |
+
"dataset_list = []\n",
|
| 90 |
+
"evalset_list = []\n",
|
| 91 |
+
"organ_list = []\n",
|
| 92 |
+
"target_dict_list = []\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"for organ in Counter(train_dataset[\"organ_major\"]).keys():\n",
|
| 95 |
+
" # collect list of tissues for fine-tuning (immune and bone marrow are included together)\n",
|
| 96 |
+
" if organ in [\"bone_marrow\"]: \n",
|
| 97 |
+
" continue\n",
|
| 98 |
+
" elif organ==\"immune\":\n",
|
| 99 |
+
" organ_ids = [\"immune\",\"bone_marrow\"]\n",
|
| 100 |
+
" organ_list += [\"immune\"]\n",
|
| 101 |
+
" else:\n",
|
| 102 |
+
" organ_ids = [organ]\n",
|
| 103 |
+
" organ_list += [organ]\n",
|
| 104 |
+
" \n",
|
| 105 |
+
" print(organ)\n",
|
| 106 |
+
" \n",
|
| 107 |
+
" # filter datasets for given organ\n",
|
| 108 |
+
" def if_organ(example):\n",
|
| 109 |
+
" return example[\"organ_major\"] in organ_ids\n",
|
| 110 |
+
" trainset_organ = train_dataset.filter(if_organ, num_proc=16)\n",
|
| 111 |
+
" \n",
|
| 112 |
+
" # per scDeepsort published method, drop cell types representing <0.5% of cells\n",
|
| 113 |
+
" celltype_counter = Counter(trainset_organ[\"cell_type\"])\n",
|
| 114 |
+
" total_cells = sum(celltype_counter.values())\n",
|
| 115 |
+
" cells_to_keep = [k for k,v in celltype_counter.items() if v>(0.005*total_cells)]\n",
|
| 116 |
+
" def if_not_rare_celltype(example):\n",
|
| 117 |
+
" return example[\"cell_type\"] in cells_to_keep\n",
|
| 118 |
+
" trainset_organ_subset = trainset_organ.filter(if_not_rare_celltype, num_proc=16)\n",
|
| 119 |
+
" \n",
|
| 120 |
+
" # shuffle datasets and rename columns\n",
|
| 121 |
+
" trainset_organ_shuffled = trainset_organ_subset.shuffle(seed=42)\n",
|
| 122 |
+
" trainset_organ_shuffled = trainset_organ_shuffled.rename_column(\"cell_type\",\"label\")\n",
|
| 123 |
+
" trainset_organ_shuffled = trainset_organ_shuffled.remove_columns(\"organ_major\")\n",
|
| 124 |
+
" \n",
|
| 125 |
+
" # create dictionary of cell types : label ids\n",
|
| 126 |
+
" target_names = list(Counter(trainset_organ_shuffled[\"label\"]).keys())\n",
|
| 127 |
+
" target_name_id_dict = dict(zip(target_names,[i for i in range(len(target_names))]))\n",
|
| 128 |
+
" target_dict_list += [target_name_id_dict]\n",
|
| 129 |
+
" \n",
|
| 130 |
+
" # change labels to numerical ids\n",
|
| 131 |
+
" def classes_to_ids(example):\n",
|
| 132 |
+
" example[\"label\"] = target_name_id_dict[example[\"label\"]]\n",
|
| 133 |
+
" return example\n",
|
| 134 |
+
" labeled_trainset = trainset_organ_shuffled.map(classes_to_ids, num_proc=16)\n",
|
| 135 |
+
" \n",
|
| 136 |
+
" # create 80/20 train/eval splits\n",
|
| 137 |
+
" labeled_train_split = labeled_trainset.select([i for i in range(0,round(len(labeled_trainset)*0.8))])\n",
|
| 138 |
+
" labeled_eval_split = labeled_trainset.select([i for i in range(round(len(labeled_trainset)*0.8),len(labeled_trainset))])\n",
|
| 139 |
+
" \n",
|
| 140 |
+
" # filter dataset for cell types in corresponding training set\n",
|
| 141 |
+
" trained_labels = list(Counter(labeled_train_split[\"label\"]).keys())\n",
|
| 142 |
+
" def if_trained_label(example):\n",
|
| 143 |
+
" return example[\"label\"] in trained_labels\n",
|
| 144 |
+
" labeled_eval_split_subset = labeled_eval_split.filter(if_trained_label, num_proc=16)\n",
|
| 145 |
+
"\n",
|
| 146 |
+
" dataset_list += [labeled_train_split]\n",
|
| 147 |
+
" evalset_list += [labeled_eval_split_subset]"
|
| 148 |
+
]
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 20,
|
| 153 |
+
"id": "83e20521-597a-4c54-897b-c4d42ea622c2",
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"trainset_dict = dict(zip(organ_list,dataset_list))\n",
|
| 158 |
+
"traintargetdict_dict = dict(zip(organ_list,target_dict_list))\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"evalset_dict = dict(zip(organ_list,evalset_list))"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "markdown",
|
| 165 |
+
"id": "10eb110d-ba43-4efc-bc43-1815d6912647",
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"source": [
|
| 168 |
+
"## Fine-Tune With Cell Classification Learning Objective and Quantify Predictive Performance"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": 18,
|
| 174 |
+
"id": "cd7b1cfb-f5cb-460e-ae77-769522ece054",
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"outputs": [],
|
| 177 |
+
"source": [
|
| 178 |
+
"def compute_metrics(pred):\n",
|
| 179 |
+
" labels = pred.label_ids\n",
|
| 180 |
+
" preds = pred.predictions.argmax(-1)\n",
|
| 181 |
+
" # calculate accuracy and macro f1 using sklearn's function\n",
|
| 182 |
+
" acc = accuracy_score(labels, preds)\n",
|
| 183 |
+
" macro_f1 = f1_score(labels, preds, average='macro')\n",
|
| 184 |
+
" return {\n",
|
| 185 |
+
" 'accuracy': acc,\n",
|
| 186 |
+
" 'macro_f1': macro_f1\n",
|
| 187 |
+
" }"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": 19,
|
| 193 |
+
"id": "d24e1ab7-0131-44bd-b458-1ce5ba31853e",
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"# set model parameters\n",
|
| 198 |
+
"# max input size\n",
|
| 199 |
+
"max_input_size = 2 ** 11 # 2048\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"# set training parameters\n",
|
| 202 |
+
"# max learning rate\n",
|
| 203 |
+
"max_lr = 5e-5\n",
|
| 204 |
+
"# how many pretrained layers to freeze\n",
|
| 205 |
+
"freeze_layers = 0\n",
|
| 206 |
+
"# number gpus\n",
|
| 207 |
+
"num_gpus = 1\n",
|
| 208 |
+
"# number cpu cores\n",
|
| 209 |
+
"num_proc = 16\n",
|
| 210 |
+
"# batch size for training and eval\n",
|
| 211 |
+
"geneformer_batch_size = 12\n",
|
| 212 |
+
"# learning schedule\n",
|
| 213 |
+
"lr_schedule_fn = \"linear\"\n",
|
| 214 |
+
"# warmup steps\n",
|
| 215 |
+
"warmup_steps = 500\n",
|
| 216 |
+
"# number of epochs\n",
|
| 217 |
+
"epochs = 10\n",
|
| 218 |
+
"# optimizer\n",
|
| 219 |
+
"optimizer = \"adamw\""
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "code",
|
| 224 |
+
"execution_count": 20,
|
| 225 |
+
"id": "05164c24-5fbf-4372-b26c-a43f3777a88d",
|
| 226 |
+
"metadata": {},
|
| 227 |
+
"outputs": [
|
| 228 |
+
{
|
| 229 |
+
"name": "stderr",
|
| 230 |
+
"output_type": "stream",
|
| 231 |
+
"text": [
|
| 232 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 233 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 234 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 235 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 236 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 237 |
+
]
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"name": "stdout",
|
| 241 |
+
"output_type": "stream",
|
| 242 |
+
"text": [
|
| 243 |
+
"spleen\n"
|
| 244 |
+
]
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"name": "stderr",
|
| 248 |
+
"output_type": "stream",
|
| 249 |
+
"text": [
|
| 250 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 251 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 252 |
+
]
|
| 253 |
+
},
|
| 254 |
+
{
|
| 255 |
+
"data": {
|
| 256 |
+
"text/html": [
|
| 257 |
+
"\n",
|
| 258 |
+
" <div>\n",
|
| 259 |
+
" \n",
|
| 260 |
+
" <progress value='10280' max='10280' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 261 |
+
" [10280/10280 13:33, Epoch 10/10]\n",
|
| 262 |
+
" </div>\n",
|
| 263 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 264 |
+
" <thead>\n",
|
| 265 |
+
" <tr style=\"text-align: left;\">\n",
|
| 266 |
+
" <th>Epoch</th>\n",
|
| 267 |
+
" <th>Training Loss</th>\n",
|
| 268 |
+
" <th>Validation Loss</th>\n",
|
| 269 |
+
" <th>Accuracy</th>\n",
|
| 270 |
+
" <th>Macro F1</th>\n",
|
| 271 |
+
" <th>Weighted F1</th>\n",
|
| 272 |
+
" </tr>\n",
|
| 273 |
+
" </thead>\n",
|
| 274 |
+
" <tbody>\n",
|
| 275 |
+
" <tr>\n",
|
| 276 |
+
" <td>1</td>\n",
|
| 277 |
+
" <td>0.087000</td>\n",
|
| 278 |
+
" <td>0.068067</td>\n",
|
| 279 |
+
" <td>0.985404</td>\n",
|
| 280 |
+
" <td>0.956839</td>\n",
|
| 281 |
+
" <td>0.985483</td>\n",
|
| 282 |
+
" </tr>\n",
|
| 283 |
+
" <tr>\n",
|
| 284 |
+
" <td>2</td>\n",
|
| 285 |
+
" <td>0.044400</td>\n",
|
| 286 |
+
" <td>0.075289</td>\n",
|
| 287 |
+
" <td>0.985079</td>\n",
|
| 288 |
+
" <td>0.955069</td>\n",
|
| 289 |
+
" <td>0.984898</td>\n",
|
| 290 |
+
" </tr>\n",
|
| 291 |
+
" <tr>\n",
|
| 292 |
+
" <td>3</td>\n",
|
| 293 |
+
" <td>0.066700</td>\n",
|
| 294 |
+
" <td>0.078703</td>\n",
|
| 295 |
+
" <td>0.983782</td>\n",
|
| 296 |
+
" <td>0.953240</td>\n",
|
| 297 |
+
" <td>0.983959</td>\n",
|
| 298 |
+
" </tr>\n",
|
| 299 |
+
" <tr>\n",
|
| 300 |
+
" <td>4</td>\n",
|
| 301 |
+
" <td>0.037400</td>\n",
|
| 302 |
+
" <td>0.057132</td>\n",
|
| 303 |
+
" <td>0.989945</td>\n",
|
| 304 |
+
" <td>0.970619</td>\n",
|
| 305 |
+
" <td>0.989883</td>\n",
|
| 306 |
+
" </tr>\n",
|
| 307 |
+
" <tr>\n",
|
| 308 |
+
" <td>5</td>\n",
|
| 309 |
+
" <td>0.025000</td>\n",
|
| 310 |
+
" <td>0.061644</td>\n",
|
| 311 |
+
" <td>0.988323</td>\n",
|
| 312 |
+
" <td>0.961126</td>\n",
|
| 313 |
+
" <td>0.988211</td>\n",
|
| 314 |
+
" </tr>\n",
|
| 315 |
+
" <tr>\n",
|
| 316 |
+
" <td>6</td>\n",
|
| 317 |
+
" <td>0.022400</td>\n",
|
| 318 |
+
" <td>0.065323</td>\n",
|
| 319 |
+
" <td>0.989296</td>\n",
|
| 320 |
+
" <td>0.969737</td>\n",
|
| 321 |
+
" <td>0.989362</td>\n",
|
| 322 |
+
" </tr>\n",
|
| 323 |
+
" <tr>\n",
|
| 324 |
+
" <td>7</td>\n",
|
| 325 |
+
" <td>0.018600</td>\n",
|
| 326 |
+
" <td>0.063710</td>\n",
|
| 327 |
+
" <td>0.989620</td>\n",
|
| 328 |
+
" <td>0.969436</td>\n",
|
| 329 |
+
" <td>0.989579</td>\n",
|
| 330 |
+
" </tr>\n",
|
| 331 |
+
" <tr>\n",
|
| 332 |
+
" <td>8</td>\n",
|
| 333 |
+
" <td>0.039800</td>\n",
|
| 334 |
+
" <td>0.065919</td>\n",
|
| 335 |
+
" <td>0.989945</td>\n",
|
| 336 |
+
" <td>0.968065</td>\n",
|
| 337 |
+
" <td>0.989802</td>\n",
|
| 338 |
+
" </tr>\n",
|
| 339 |
+
" <tr>\n",
|
| 340 |
+
" <td>9</td>\n",
|
| 341 |
+
" <td>0.030200</td>\n",
|
| 342 |
+
" <td>0.061359</td>\n",
|
| 343 |
+
" <td>0.990269</td>\n",
|
| 344 |
+
" <td>0.971700</td>\n",
|
| 345 |
+
" <td>0.990314</td>\n",
|
| 346 |
+
" </tr>\n",
|
| 347 |
+
" <tr>\n",
|
| 348 |
+
" <td>10</td>\n",
|
| 349 |
+
" <td>0.013400</td>\n",
|
| 350 |
+
" <td>0.059181</td>\n",
|
| 351 |
+
" <td>0.991567</td>\n",
|
| 352 |
+
" <td>0.974599</td>\n",
|
| 353 |
+
" <td>0.991552</td>\n",
|
| 354 |
+
" </tr>\n",
|
| 355 |
+
" </tbody>\n",
|
| 356 |
+
"</table><p>"
|
| 357 |
+
],
|
| 358 |
+
"text/plain": [
|
| 359 |
+
"<IPython.core.display.HTML object>"
|
| 360 |
+
]
|
| 361 |
+
},
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"output_type": "display_data"
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"name": "stderr",
|
| 367 |
+
"output_type": "stream",
|
| 368 |
+
"text": [
|
| 369 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 370 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 371 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 372 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 373 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 374 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 375 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 376 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 377 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 378 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 379 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 380 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 381 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 382 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 383 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 384 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 385 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 386 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 387 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 388 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"data": {
|
| 393 |
+
"text/html": [
|
| 394 |
+
"\n",
|
| 395 |
+
" <div>\n",
|
| 396 |
+
" \n",
|
| 397 |
+
" <progress value='257' max='257' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 398 |
+
" [257/257 00:07]\n",
|
| 399 |
+
" </div>\n",
|
| 400 |
+
" "
|
| 401 |
+
],
|
| 402 |
+
"text/plain": [
|
| 403 |
+
"<IPython.core.display.HTML object>"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
"metadata": {},
|
| 407 |
+
"output_type": "display_data"
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"name": "stderr",
|
| 411 |
+
"output_type": "stream",
|
| 412 |
+
"text": [
|
| 413 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 414 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 415 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 416 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 417 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 418 |
+
]
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"name": "stdout",
|
| 422 |
+
"output_type": "stream",
|
| 423 |
+
"text": [
|
| 424 |
+
"kidney\n"
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"name": "stderr",
|
| 429 |
+
"output_type": "stream",
|
| 430 |
+
"text": [
|
| 431 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 432 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 433 |
+
]
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"data": {
|
| 437 |
+
"text/html": [
|
| 438 |
+
"\n",
|
| 439 |
+
" <div>\n",
|
| 440 |
+
" \n",
|
| 441 |
+
" <progress value='29340' max='29340' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 442 |
+
" [29340/29340 45:43, Epoch 10/10]\n",
|
| 443 |
+
" </div>\n",
|
| 444 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 445 |
+
" <thead>\n",
|
| 446 |
+
" <tr style=\"text-align: left;\">\n",
|
| 447 |
+
" <th>Epoch</th>\n",
|
| 448 |
+
" <th>Training Loss</th>\n",
|
| 449 |
+
" <th>Validation Loss</th>\n",
|
| 450 |
+
" <th>Accuracy</th>\n",
|
| 451 |
+
" <th>Macro F1</th>\n",
|
| 452 |
+
" <th>Weighted F1</th>\n",
|
| 453 |
+
" </tr>\n",
|
| 454 |
+
" </thead>\n",
|
| 455 |
+
" <tbody>\n",
|
| 456 |
+
" <tr>\n",
|
| 457 |
+
" <td>1</td>\n",
|
| 458 |
+
" <td>0.326900</td>\n",
|
| 459 |
+
" <td>0.299193</td>\n",
|
| 460 |
+
" <td>0.912500</td>\n",
|
| 461 |
+
" <td>0.823067</td>\n",
|
| 462 |
+
" <td>0.909627</td>\n",
|
| 463 |
+
" </tr>\n",
|
| 464 |
+
" <tr>\n",
|
| 465 |
+
" <td>2</td>\n",
|
| 466 |
+
" <td>0.224200</td>\n",
|
| 467 |
+
" <td>0.239580</td>\n",
|
| 468 |
+
" <td>0.926477</td>\n",
|
| 469 |
+
" <td>0.850237</td>\n",
|
| 470 |
+
" <td>0.923902</td>\n",
|
| 471 |
+
" </tr>\n",
|
| 472 |
+
" <tr>\n",
|
| 473 |
+
" <td>3</td>\n",
|
| 474 |
+
" <td>0.221600</td>\n",
|
| 475 |
+
" <td>0.242810</td>\n",
|
| 476 |
+
" <td>0.930227</td>\n",
|
| 477 |
+
" <td>0.878553</td>\n",
|
| 478 |
+
" <td>0.930349</td>\n",
|
| 479 |
+
" </tr>\n",
|
| 480 |
+
" <tr>\n",
|
| 481 |
+
" <td>4</td>\n",
|
| 482 |
+
" <td>0.166100</td>\n",
|
| 483 |
+
" <td>0.264178</td>\n",
|
| 484 |
+
" <td>0.933409</td>\n",
|
| 485 |
+
" <td>0.884759</td>\n",
|
| 486 |
+
" <td>0.933031</td>\n",
|
| 487 |
+
" </tr>\n",
|
| 488 |
+
" <tr>\n",
|
| 489 |
+
" <td>5</td>\n",
|
| 490 |
+
" <td>0.144100</td>\n",
|
| 491 |
+
" <td>0.279282</td>\n",
|
| 492 |
+
" <td>0.935000</td>\n",
|
| 493 |
+
" <td>0.887659</td>\n",
|
| 494 |
+
" <td>0.934987</td>\n",
|
| 495 |
+
" </tr>\n",
|
| 496 |
+
" <tr>\n",
|
| 497 |
+
" <td>6</td>\n",
|
| 498 |
+
" <td>0.112800</td>\n",
|
| 499 |
+
" <td>0.307647</td>\n",
|
| 500 |
+
" <td>0.935909</td>\n",
|
| 501 |
+
" <td>0.889239</td>\n",
|
| 502 |
+
" <td>0.935365</td>\n",
|
| 503 |
+
" </tr>\n",
|
| 504 |
+
" <tr>\n",
|
| 505 |
+
" <td>7</td>\n",
|
| 506 |
+
" <td>0.084600</td>\n",
|
| 507 |
+
" <td>0.326399</td>\n",
|
| 508 |
+
" <td>0.932841</td>\n",
|
| 509 |
+
" <td>0.892447</td>\n",
|
| 510 |
+
" <td>0.933191</td>\n",
|
| 511 |
+
" </tr>\n",
|
| 512 |
+
" <tr>\n",
|
| 513 |
+
" <td>8</td>\n",
|
| 514 |
+
" <td>0.068300</td>\n",
|
| 515 |
+
" <td>0.332626</td>\n",
|
| 516 |
+
" <td>0.936591</td>\n",
|
| 517 |
+
" <td>0.891629</td>\n",
|
| 518 |
+
" <td>0.936354</td>\n",
|
| 519 |
+
" </tr>\n",
|
| 520 |
+
" <tr>\n",
|
| 521 |
+
" <td>9</td>\n",
|
| 522 |
+
" <td>0.065500</td>\n",
|
| 523 |
+
" <td>0.348174</td>\n",
|
| 524 |
+
" <td>0.935227</td>\n",
|
| 525 |
+
" <td>0.889484</td>\n",
|
| 526 |
+
" <td>0.935040</td>\n",
|
| 527 |
+
" </tr>\n",
|
| 528 |
+
" <tr>\n",
|
| 529 |
+
" <td>10</td>\n",
|
| 530 |
+
" <td>0.046100</td>\n",
|
| 531 |
+
" <td>0.355350</td>\n",
|
| 532 |
+
" <td>0.935000</td>\n",
|
| 533 |
+
" <td>0.894578</td>\n",
|
| 534 |
+
" <td>0.934971</td>\n",
|
| 535 |
+
" </tr>\n",
|
| 536 |
+
" </tbody>\n",
|
| 537 |
+
"</table><p>"
|
| 538 |
+
],
|
| 539 |
+
"text/plain": [
|
| 540 |
+
"<IPython.core.display.HTML object>"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
"metadata": {},
|
| 544 |
+
"output_type": "display_data"
|
| 545 |
+
},
|
| 546 |
+
{
|
| 547 |
+
"name": "stderr",
|
| 548 |
+
"output_type": "stream",
|
| 549 |
+
"text": [
|
| 550 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 551 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 552 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 553 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 554 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 555 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 556 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 557 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 558 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 559 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 560 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 561 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 562 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 563 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 564 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 565 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 566 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 567 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 568 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 569 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 570 |
+
]
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"data": {
|
| 574 |
+
"text/html": [
|
| 575 |
+
"\n",
|
| 576 |
+
" <div>\n",
|
| 577 |
+
" \n",
|
| 578 |
+
" <progress value='734' max='734' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 579 |
+
" [734/734 00:27]\n",
|
| 580 |
+
" </div>\n",
|
| 581 |
+
" "
|
| 582 |
+
],
|
| 583 |
+
"text/plain": [
|
| 584 |
+
"<IPython.core.display.HTML object>"
|
| 585 |
+
]
|
| 586 |
+
},
|
| 587 |
+
"metadata": {},
|
| 588 |
+
"output_type": "display_data"
|
| 589 |
+
},
|
| 590 |
+
{
|
| 591 |
+
"name": "stderr",
|
| 592 |
+
"output_type": "stream",
|
| 593 |
+
"text": [
|
| 594 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 595 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 596 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 597 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 598 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 599 |
+
]
|
| 600 |
+
},
|
| 601 |
+
{
|
| 602 |
+
"name": "stdout",
|
| 603 |
+
"output_type": "stream",
|
| 604 |
+
"text": [
|
| 605 |
+
"lung\n"
|
| 606 |
+
]
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
"name": "stderr",
|
| 610 |
+
"output_type": "stream",
|
| 611 |
+
"text": [
|
| 612 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 613 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 614 |
+
]
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"data": {
|
| 618 |
+
"text/html": [
|
| 619 |
+
"\n",
|
| 620 |
+
" <div>\n",
|
| 621 |
+
" \n",
|
| 622 |
+
" <progress value='21750' max='21750' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 623 |
+
" [21750/21750 30:32, Epoch 10/10]\n",
|
| 624 |
+
" </div>\n",
|
| 625 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 626 |
+
" <thead>\n",
|
| 627 |
+
" <tr style=\"text-align: left;\">\n",
|
| 628 |
+
" <th>Epoch</th>\n",
|
| 629 |
+
" <th>Training Loss</th>\n",
|
| 630 |
+
" <th>Validation Loss</th>\n",
|
| 631 |
+
" <th>Accuracy</th>\n",
|
| 632 |
+
" <th>Macro F1</th>\n",
|
| 633 |
+
" <th>Weighted F1</th>\n",
|
| 634 |
+
" </tr>\n",
|
| 635 |
+
" </thead>\n",
|
| 636 |
+
" <tbody>\n",
|
| 637 |
+
" <tr>\n",
|
| 638 |
+
" <td>1</td>\n",
|
| 639 |
+
" <td>0.337600</td>\n",
|
| 640 |
+
" <td>0.341523</td>\n",
|
| 641 |
+
" <td>0.906360</td>\n",
|
| 642 |
+
" <td>0.759979</td>\n",
|
| 643 |
+
" <td>0.899310</td>\n",
|
| 644 |
+
" </tr>\n",
|
| 645 |
+
" <tr>\n",
|
| 646 |
+
" <td>2</td>\n",
|
| 647 |
+
" <td>0.211900</td>\n",
|
| 648 |
+
" <td>0.258954</td>\n",
|
| 649 |
+
" <td>0.928429</td>\n",
|
| 650 |
+
" <td>0.835534</td>\n",
|
| 651 |
+
" <td>0.925903</td>\n",
|
| 652 |
+
" </tr>\n",
|
| 653 |
+
" <tr>\n",
|
| 654 |
+
" <td>3</td>\n",
|
| 655 |
+
" <td>0.208600</td>\n",
|
| 656 |
+
" <td>0.282081</td>\n",
|
| 657 |
+
" <td>0.930421</td>\n",
|
| 658 |
+
" <td>0.842786</td>\n",
|
| 659 |
+
" <td>0.928013</td>\n",
|
| 660 |
+
" </tr>\n",
|
| 661 |
+
" <tr>\n",
|
| 662 |
+
" <td>4</td>\n",
|
| 663 |
+
" <td>0.144400</td>\n",
|
| 664 |
+
" <td>0.253047</td>\n",
|
| 665 |
+
" <td>0.935479</td>\n",
|
| 666 |
+
" <td>0.871712</td>\n",
|
| 667 |
+
" <td>0.935234</td>\n",
|
| 668 |
+
" </tr>\n",
|
| 669 |
+
" <tr>\n",
|
| 670 |
+
" <td>5</td>\n",
|
| 671 |
+
" <td>0.109200</td>\n",
|
| 672 |
+
" <td>0.268833</td>\n",
|
| 673 |
+
" <td>0.939464</td>\n",
|
| 674 |
+
" <td>0.876173</td>\n",
|
| 675 |
+
" <td>0.938870</td>\n",
|
| 676 |
+
" </tr>\n",
|
| 677 |
+
" <tr>\n",
|
| 678 |
+
" <td>6</td>\n",
|
| 679 |
+
" <td>0.132700</td>\n",
|
| 680 |
+
" <td>0.282697</td>\n",
|
| 681 |
+
" <td>0.940536</td>\n",
|
| 682 |
+
" <td>0.883271</td>\n",
|
| 683 |
+
" <td>0.940191</td>\n",
|
| 684 |
+
" </tr>\n",
|
| 685 |
+
" <tr>\n",
|
| 686 |
+
" <td>7</td>\n",
|
| 687 |
+
" <td>0.081800</td>\n",
|
| 688 |
+
" <td>0.295864</td>\n",
|
| 689 |
+
" <td>0.940843</td>\n",
|
| 690 |
+
" <td>0.884201</td>\n",
|
| 691 |
+
" <td>0.940170</td>\n",
|
| 692 |
+
" </tr>\n",
|
| 693 |
+
" <tr>\n",
|
| 694 |
+
" <td>8</td>\n",
|
| 695 |
+
" <td>0.035900</td>\n",
|
| 696 |
+
" <td>0.306600</td>\n",
|
| 697 |
+
" <td>0.941916</td>\n",
|
| 698 |
+
" <td>0.884777</td>\n",
|
| 699 |
+
" <td>0.941578</td>\n",
|
| 700 |
+
" </tr>\n",
|
| 701 |
+
" <tr>\n",
|
| 702 |
+
" <td>9</td>\n",
|
| 703 |
+
" <td>0.050800</td>\n",
|
| 704 |
+
" <td>0.311677</td>\n",
|
| 705 |
+
" <td>0.940536</td>\n",
|
| 706 |
+
" <td>0.883437</td>\n",
|
| 707 |
+
" <td>0.940294</td>\n",
|
| 708 |
+
" </tr>\n",
|
| 709 |
+
" <tr>\n",
|
| 710 |
+
" <td>10</td>\n",
|
| 711 |
+
" <td>0.035800</td>\n",
|
| 712 |
+
" <td>0.315360</td>\n",
|
| 713 |
+
" <td>0.940843</td>\n",
|
| 714 |
+
" <td>0.883551</td>\n",
|
| 715 |
+
" <td>0.940612</td>\n",
|
| 716 |
+
" </tr>\n",
|
| 717 |
+
" </tbody>\n",
|
| 718 |
+
"</table><p>"
|
| 719 |
+
],
|
| 720 |
+
"text/plain": [
|
| 721 |
+
"<IPython.core.display.HTML object>"
|
| 722 |
+
]
|
| 723 |
+
},
|
| 724 |
+
"metadata": {},
|
| 725 |
+
"output_type": "display_data"
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"name": "stderr",
|
| 729 |
+
"output_type": "stream",
|
| 730 |
+
"text": [
|
| 731 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 732 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 733 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 734 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 735 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 736 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 737 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 738 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 739 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 740 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 741 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 742 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 743 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 744 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 745 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 746 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 747 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 748 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 749 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 750 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 751 |
+
]
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"data": {
|
| 755 |
+
"text/html": [
|
| 756 |
+
"\n",
|
| 757 |
+
" <div>\n",
|
| 758 |
+
" \n",
|
| 759 |
+
" <progress value='544' max='544' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 760 |
+
" [544/544 00:19]\n",
|
| 761 |
+
" </div>\n",
|
| 762 |
+
" "
|
| 763 |
+
],
|
| 764 |
+
"text/plain": [
|
| 765 |
+
"<IPython.core.display.HTML object>"
|
| 766 |
+
]
|
| 767 |
+
},
|
| 768 |
+
"metadata": {},
|
| 769 |
+
"output_type": "display_data"
|
| 770 |
+
},
|
| 771 |
+
{
|
| 772 |
+
"name": "stderr",
|
| 773 |
+
"output_type": "stream",
|
| 774 |
+
"text": [
|
| 775 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 776 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 777 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 778 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 779 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 780 |
+
]
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"name": "stdout",
|
| 784 |
+
"output_type": "stream",
|
| 785 |
+
"text": [
|
| 786 |
+
"brain\n"
|
| 787 |
+
]
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"name": "stderr",
|
| 791 |
+
"output_type": "stream",
|
| 792 |
+
"text": [
|
| 793 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 794 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 795 |
+
]
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"data": {
|
| 799 |
+
"text/html": [
|
| 800 |
+
"\n",
|
| 801 |
+
" <div>\n",
|
| 802 |
+
" \n",
|
| 803 |
+
" <progress value='8880' max='8880' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 804 |
+
" [8880/8880 11:14, Epoch 10/10]\n",
|
| 805 |
+
" </div>\n",
|
| 806 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 807 |
+
" <thead>\n",
|
| 808 |
+
" <tr style=\"text-align: left;\">\n",
|
| 809 |
+
" <th>Epoch</th>\n",
|
| 810 |
+
" <th>Training Loss</th>\n",
|
| 811 |
+
" <th>Validation Loss</th>\n",
|
| 812 |
+
" <th>Accuracy</th>\n",
|
| 813 |
+
" <th>Macro F1</th>\n",
|
| 814 |
+
" <th>Weighted F1</th>\n",
|
| 815 |
+
" </tr>\n",
|
| 816 |
+
" </thead>\n",
|
| 817 |
+
" <tbody>\n",
|
| 818 |
+
" <tr>\n",
|
| 819 |
+
" <td>1</td>\n",
|
| 820 |
+
" <td>0.163100</td>\n",
|
| 821 |
+
" <td>0.156640</td>\n",
|
| 822 |
+
" <td>0.970345</td>\n",
|
| 823 |
+
" <td>0.736455</td>\n",
|
| 824 |
+
" <td>0.960714</td>\n",
|
| 825 |
+
" </tr>\n",
|
| 826 |
+
" <tr>\n",
|
| 827 |
+
" <td>2</td>\n",
|
| 828 |
+
" <td>0.149800</td>\n",
|
| 829 |
+
" <td>0.134897</td>\n",
|
| 830 |
+
" <td>0.968844</td>\n",
|
| 831 |
+
" <td>0.747114</td>\n",
|
| 832 |
+
" <td>0.960726</td>\n",
|
| 833 |
+
" </tr>\n",
|
| 834 |
+
" <tr>\n",
|
| 835 |
+
" <td>3</td>\n",
|
| 836 |
+
" <td>0.105600</td>\n",
|
| 837 |
+
" <td>0.115354</td>\n",
|
| 838 |
+
" <td>0.972222</td>\n",
|
| 839 |
+
" <td>0.775271</td>\n",
|
| 840 |
+
" <td>0.964932</td>\n",
|
| 841 |
+
" </tr>\n",
|
| 842 |
+
" <tr>\n",
|
| 843 |
+
" <td>4</td>\n",
|
| 844 |
+
" <td>0.086900</td>\n",
|
| 845 |
+
" <td>0.207918</td>\n",
|
| 846 |
+
" <td>0.968844</td>\n",
|
| 847 |
+
" <td>0.707927</td>\n",
|
| 848 |
+
" <td>0.958257</td>\n",
|
| 849 |
+
" </tr>\n",
|
| 850 |
+
" <tr>\n",
|
| 851 |
+
" <td>5</td>\n",
|
| 852 |
+
" <td>0.056400</td>\n",
|
| 853 |
+
" <td>0.106548</td>\n",
|
| 854 |
+
" <td>0.974099</td>\n",
|
| 855 |
+
" <td>0.839838</td>\n",
|
| 856 |
+
" <td>0.971611</td>\n",
|
| 857 |
+
" </tr>\n",
|
| 858 |
+
" <tr>\n",
|
| 859 |
+
" <td>6</td>\n",
|
| 860 |
+
" <td>0.037600</td>\n",
|
| 861 |
+
" <td>0.117437</td>\n",
|
| 862 |
+
" <td>0.978228</td>\n",
|
| 863 |
+
" <td>0.856578</td>\n",
|
| 864 |
+
" <td>0.975665</td>\n",
|
| 865 |
+
" </tr>\n",
|
| 866 |
+
" <tr>\n",
|
| 867 |
+
" <td>7</td>\n",
|
| 868 |
+
" <td>0.030500</td>\n",
|
| 869 |
+
" <td>0.127885</td>\n",
|
| 870 |
+
" <td>0.974474</td>\n",
|
| 871 |
+
" <td>0.856296</td>\n",
|
| 872 |
+
" <td>0.973531</td>\n",
|
| 873 |
+
" </tr>\n",
|
| 874 |
+
" <tr>\n",
|
| 875 |
+
" <td>8</td>\n",
|
| 876 |
+
" <td>0.019300</td>\n",
|
| 877 |
+
" <td>0.143203</td>\n",
|
| 878 |
+
" <td>0.977853</td>\n",
|
| 879 |
+
" <td>0.859362</td>\n",
|
| 880 |
+
" <td>0.975776</td>\n",
|
| 881 |
+
" </tr>\n",
|
| 882 |
+
" <tr>\n",
|
| 883 |
+
" <td>9</td>\n",
|
| 884 |
+
" <td>0.007400</td>\n",
|
| 885 |
+
" <td>0.153758</td>\n",
|
| 886 |
+
" <td>0.972598</td>\n",
|
| 887 |
+
" <td>0.852835</td>\n",
|
| 888 |
+
" <td>0.972314</td>\n",
|
| 889 |
+
" </tr>\n",
|
| 890 |
+
" <tr>\n",
|
| 891 |
+
" <td>10</td>\n",
|
| 892 |
+
" <td>0.017200</td>\n",
|
| 893 |
+
" <td>0.153911</td>\n",
|
| 894 |
+
" <td>0.975976</td>\n",
|
| 895 |
+
" <td>0.858196</td>\n",
|
| 896 |
+
" <td>0.974498</td>\n",
|
| 897 |
+
" </tr>\n",
|
| 898 |
+
" </tbody>\n",
|
| 899 |
+
"</table><p>"
|
| 900 |
+
],
|
| 901 |
+
"text/plain": [
|
| 902 |
+
"<IPython.core.display.HTML object>"
|
| 903 |
+
]
|
| 904 |
+
},
|
| 905 |
+
"metadata": {},
|
| 906 |
+
"output_type": "display_data"
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"name": "stderr",
|
| 910 |
+
"output_type": "stream",
|
| 911 |
+
"text": [
|
| 912 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 913 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 914 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 915 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 916 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 917 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 918 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 919 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 920 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 921 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 922 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 923 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 924 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 925 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 926 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 927 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 928 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 929 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 930 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 931 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 932 |
+
]
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"data": {
|
| 936 |
+
"text/html": [
|
| 937 |
+
"\n",
|
| 938 |
+
" <div>\n",
|
| 939 |
+
" \n",
|
| 940 |
+
" <progress value='222' max='222' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 941 |
+
" [222/222 00:04]\n",
|
| 942 |
+
" </div>\n",
|
| 943 |
+
" "
|
| 944 |
+
],
|
| 945 |
+
"text/plain": [
|
| 946 |
+
"<IPython.core.display.HTML object>"
|
| 947 |
+
]
|
| 948 |
+
},
|
| 949 |
+
"metadata": {},
|
| 950 |
+
"output_type": "display_data"
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"name": "stderr",
|
| 954 |
+
"output_type": "stream",
|
| 955 |
+
"text": [
|
| 956 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 957 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 958 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 959 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 960 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 961 |
+
]
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"name": "stdout",
|
| 965 |
+
"output_type": "stream",
|
| 966 |
+
"text": [
|
| 967 |
+
"placenta\n"
|
| 968 |
+
]
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"name": "stderr",
|
| 972 |
+
"output_type": "stream",
|
| 973 |
+
"text": [
|
| 974 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 975 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 976 |
+
]
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"data": {
|
| 980 |
+
"text/html": [
|
| 981 |
+
"\n",
|
| 982 |
+
" <div>\n",
|
| 983 |
+
" \n",
|
| 984 |
+
" <progress value='6180' max='6180' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 985 |
+
" [6180/6180 10:28, Epoch 10/10]\n",
|
| 986 |
+
" </div>\n",
|
| 987 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 988 |
+
" <thead>\n",
|
| 989 |
+
" <tr style=\"text-align: left;\">\n",
|
| 990 |
+
" <th>Epoch</th>\n",
|
| 991 |
+
" <th>Training Loss</th>\n",
|
| 992 |
+
" <th>Validation Loss</th>\n",
|
| 993 |
+
" <th>Accuracy</th>\n",
|
| 994 |
+
" <th>Macro F1</th>\n",
|
| 995 |
+
" <th>Weighted F1</th>\n",
|
| 996 |
+
" </tr>\n",
|
| 997 |
+
" </thead>\n",
|
| 998 |
+
" <tbody>\n",
|
| 999 |
+
" <tr>\n",
|
| 1000 |
+
" <td>1</td>\n",
|
| 1001 |
+
" <td>0.128700</td>\n",
|
| 1002 |
+
" <td>0.125175</td>\n",
|
| 1003 |
+
" <td>0.960626</td>\n",
|
| 1004 |
+
" <td>0.935752</td>\n",
|
| 1005 |
+
" <td>0.959463</td>\n",
|
| 1006 |
+
" </tr>\n",
|
| 1007 |
+
" <tr>\n",
|
| 1008 |
+
" <td>2</td>\n",
|
| 1009 |
+
" <td>0.064000</td>\n",
|
| 1010 |
+
" <td>0.215607</td>\n",
|
| 1011 |
+
" <td>0.951456</td>\n",
|
| 1012 |
+
" <td>0.920579</td>\n",
|
| 1013 |
+
" <td>0.949828</td>\n",
|
| 1014 |
+
" </tr>\n",
|
| 1015 |
+
" <tr>\n",
|
| 1016 |
+
" <td>3</td>\n",
|
| 1017 |
+
" <td>0.051300</td>\n",
|
| 1018 |
+
" <td>0.203044</td>\n",
|
| 1019 |
+
" <td>0.961165</td>\n",
|
| 1020 |
+
" <td>0.934195</td>\n",
|
| 1021 |
+
" <td>0.959470</td>\n",
|
| 1022 |
+
" </tr>\n",
|
| 1023 |
+
" <tr>\n",
|
| 1024 |
+
" <td>4</td>\n",
|
| 1025 |
+
" <td>0.045300</td>\n",
|
| 1026 |
+
" <td>0.115701</td>\n",
|
| 1027 |
+
" <td>0.978964</td>\n",
|
| 1028 |
+
" <td>0.966387</td>\n",
|
| 1029 |
+
" <td>0.978788</td>\n",
|
| 1030 |
+
" </tr>\n",
|
| 1031 |
+
" <tr>\n",
|
| 1032 |
+
" <td>5</td>\n",
|
| 1033 |
+
" <td>0.048200</td>\n",
|
| 1034 |
+
" <td>0.149484</td>\n",
|
| 1035 |
+
" <td>0.973571</td>\n",
|
| 1036 |
+
" <td>0.958927</td>\n",
|
| 1037 |
+
" <td>0.973305</td>\n",
|
| 1038 |
+
" </tr>\n",
|
| 1039 |
+
" <tr>\n",
|
| 1040 |
+
" <td>6</td>\n",
|
| 1041 |
+
" <td>0.040900</td>\n",
|
| 1042 |
+
" <td>0.134339</td>\n",
|
| 1043 |
+
" <td>0.978964</td>\n",
|
| 1044 |
+
" <td>0.967466</td>\n",
|
| 1045 |
+
" <td>0.978899</td>\n",
|
| 1046 |
+
" </tr>\n",
|
| 1047 |
+
" <tr>\n",
|
| 1048 |
+
" <td>7</td>\n",
|
| 1049 |
+
" <td>0.001600</td>\n",
|
| 1050 |
+
" <td>0.159900</td>\n",
|
| 1051 |
+
" <td>0.978425</td>\n",
|
| 1052 |
+
" <td>0.966713</td>\n",
|
| 1053 |
+
" <td>0.978211</td>\n",
|
| 1054 |
+
" </tr>\n",
|
| 1055 |
+
" <tr>\n",
|
| 1056 |
+
" <td>8</td>\n",
|
| 1057 |
+
" <td>0.002400</td>\n",
|
| 1058 |
+
" <td>0.125351</td>\n",
|
| 1059 |
+
" <td>0.979504</td>\n",
|
| 1060 |
+
" <td>0.968064</td>\n",
|
| 1061 |
+
" <td>0.979428</td>\n",
|
| 1062 |
+
" </tr>\n",
|
| 1063 |
+
" <tr>\n",
|
| 1064 |
+
" <td>9</td>\n",
|
| 1065 |
+
" <td>0.009400</td>\n",
|
| 1066 |
+
" <td>0.120132</td>\n",
|
| 1067 |
+
" <td>0.980583</td>\n",
|
| 1068 |
+
" <td>0.969631</td>\n",
|
| 1069 |
+
" <td>0.980506</td>\n",
|
| 1070 |
+
" </tr>\n",
|
| 1071 |
+
" <tr>\n",
|
| 1072 |
+
" <td>10</td>\n",
|
| 1073 |
+
" <td>0.001500</td>\n",
|
| 1074 |
+
" <td>0.137864</td>\n",
|
| 1075 |
+
" <td>0.978964</td>\n",
|
| 1076 |
+
" <td>0.967180</td>\n",
|
| 1077 |
+
" <td>0.978825</td>\n",
|
| 1078 |
+
" </tr>\n",
|
| 1079 |
+
" </tbody>\n",
|
| 1080 |
+
"</table><p>"
|
| 1081 |
+
],
|
| 1082 |
+
"text/plain": [
|
| 1083 |
+
"<IPython.core.display.HTML object>"
|
| 1084 |
+
]
|
| 1085 |
+
},
|
| 1086 |
+
"metadata": {},
|
| 1087 |
+
"output_type": "display_data"
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"name": "stderr",
|
| 1091 |
+
"output_type": "stream",
|
| 1092 |
+
"text": [
|
| 1093 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1094 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1095 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1096 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1097 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1098 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1099 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1100 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1101 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1102 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1103 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1104 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1105 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1106 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1107 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1108 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1109 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1110 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1111 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1112 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1113 |
+
]
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"data": {
|
| 1117 |
+
"text/html": [
|
| 1118 |
+
"\n",
|
| 1119 |
+
" <div>\n",
|
| 1120 |
+
" \n",
|
| 1121 |
+
" <progress value='155' max='155' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1122 |
+
" [155/155 00:05]\n",
|
| 1123 |
+
" </div>\n",
|
| 1124 |
+
" "
|
| 1125 |
+
],
|
| 1126 |
+
"text/plain": [
|
| 1127 |
+
"<IPython.core.display.HTML object>"
|
| 1128 |
+
]
|
| 1129 |
+
},
|
| 1130 |
+
"metadata": {},
|
| 1131 |
+
"output_type": "display_data"
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"name": "stderr",
|
| 1135 |
+
"output_type": "stream",
|
| 1136 |
+
"text": [
|
| 1137 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 1138 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1139 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1140 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 1141 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 1142 |
+
]
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"name": "stdout",
|
| 1146 |
+
"output_type": "stream",
|
| 1147 |
+
"text": [
|
| 1148 |
+
"immune\n"
|
| 1149 |
+
]
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"name": "stderr",
|
| 1153 |
+
"output_type": "stream",
|
| 1154 |
+
"text": [
|
| 1155 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1156 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1157 |
+
]
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"data": {
|
| 1161 |
+
"text/html": [
|
| 1162 |
+
"\n",
|
| 1163 |
+
" <div>\n",
|
| 1164 |
+
" \n",
|
| 1165 |
+
" <progress value='17140' max='17140' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1166 |
+
" [17140/17140 22:02, Epoch 10/10]\n",
|
| 1167 |
+
" </div>\n",
|
| 1168 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 1169 |
+
" <thead>\n",
|
| 1170 |
+
" <tr style=\"text-align: left;\">\n",
|
| 1171 |
+
" <th>Epoch</th>\n",
|
| 1172 |
+
" <th>Training Loss</th>\n",
|
| 1173 |
+
" <th>Validation Loss</th>\n",
|
| 1174 |
+
" <th>Accuracy</th>\n",
|
| 1175 |
+
" <th>Macro F1</th>\n",
|
| 1176 |
+
" <th>Weighted F1</th>\n",
|
| 1177 |
+
" </tr>\n",
|
| 1178 |
+
" </thead>\n",
|
| 1179 |
+
" <tbody>\n",
|
| 1180 |
+
" <tr>\n",
|
| 1181 |
+
" <td>1</td>\n",
|
| 1182 |
+
" <td>0.288900</td>\n",
|
| 1183 |
+
" <td>0.231582</td>\n",
|
| 1184 |
+
" <td>0.936770</td>\n",
|
| 1185 |
+
" <td>0.868405</td>\n",
|
| 1186 |
+
" <td>0.934816</td>\n",
|
| 1187 |
+
" </tr>\n",
|
| 1188 |
+
" <tr>\n",
|
| 1189 |
+
" <td>2</td>\n",
|
| 1190 |
+
" <td>0.203200</td>\n",
|
| 1191 |
+
" <td>0.206292</td>\n",
|
| 1192 |
+
" <td>0.937354</td>\n",
|
| 1193 |
+
" <td>0.888661</td>\n",
|
| 1194 |
+
" <td>0.939555</td>\n",
|
| 1195 |
+
" </tr>\n",
|
| 1196 |
+
" <tr>\n",
|
| 1197 |
+
" <td>3</td>\n",
|
| 1198 |
+
" <td>0.183500</td>\n",
|
| 1199 |
+
" <td>0.195811</td>\n",
|
| 1200 |
+
" <td>0.944942</td>\n",
|
| 1201 |
+
" <td>0.891149</td>\n",
|
| 1202 |
+
" <td>0.944008</td>\n",
|
| 1203 |
+
" </tr>\n",
|
| 1204 |
+
" <tr>\n",
|
| 1205 |
+
" <td>4</td>\n",
|
| 1206 |
+
" <td>0.151000</td>\n",
|
| 1207 |
+
" <td>0.219581</td>\n",
|
| 1208 |
+
" <td>0.947665</td>\n",
|
| 1209 |
+
" <td>0.906578</td>\n",
|
| 1210 |
+
" <td>0.947093</td>\n",
|
| 1211 |
+
" </tr>\n",
|
| 1212 |
+
" <tr>\n",
|
| 1213 |
+
" <td>5</td>\n",
|
| 1214 |
+
" <td>0.090000</td>\n",
|
| 1215 |
+
" <td>0.247120</td>\n",
|
| 1216 |
+
" <td>0.946693</td>\n",
|
| 1217 |
+
" <td>0.898812</td>\n",
|
| 1218 |
+
" <td>0.945808</td>\n",
|
| 1219 |
+
" </tr>\n",
|
| 1220 |
+
" <tr>\n",
|
| 1221 |
+
" <td>6</td>\n",
|
| 1222 |
+
" <td>0.060400</td>\n",
|
| 1223 |
+
" <td>0.249662</td>\n",
|
| 1224 |
+
" <td>0.948444</td>\n",
|
| 1225 |
+
" <td>0.905014</td>\n",
|
| 1226 |
+
" <td>0.947975</td>\n",
|
| 1227 |
+
" </tr>\n",
|
| 1228 |
+
" <tr>\n",
|
| 1229 |
+
" <td>7</td>\n",
|
| 1230 |
+
" <td>0.071300</td>\n",
|
| 1231 |
+
" <td>0.272767</td>\n",
|
| 1232 |
+
" <td>0.949416</td>\n",
|
| 1233 |
+
" <td>0.911514</td>\n",
|
| 1234 |
+
" <td>0.949748</td>\n",
|
| 1235 |
+
" </tr>\n",
|
| 1236 |
+
" <tr>\n",
|
| 1237 |
+
" <td>8</td>\n",
|
| 1238 |
+
" <td>0.052600</td>\n",
|
| 1239 |
+
" <td>0.305051</td>\n",
|
| 1240 |
+
" <td>0.945331</td>\n",
|
| 1241 |
+
" <td>0.902348</td>\n",
|
| 1242 |
+
" <td>0.944987</td>\n",
|
| 1243 |
+
" </tr>\n",
|
| 1244 |
+
" <tr>\n",
|
| 1245 |
+
" <td>9</td>\n",
|
| 1246 |
+
" <td>0.026900</td>\n",
|
| 1247 |
+
" <td>0.294135</td>\n",
|
| 1248 |
+
" <td>0.948638</td>\n",
|
| 1249 |
+
" <td>0.904058</td>\n",
|
| 1250 |
+
" <td>0.948296</td>\n",
|
| 1251 |
+
" </tr>\n",
|
| 1252 |
+
" <tr>\n",
|
| 1253 |
+
" <td>10</td>\n",
|
| 1254 |
+
" <td>0.034500</td>\n",
|
| 1255 |
+
" <td>0.292029</td>\n",
|
| 1256 |
+
" <td>0.950195</td>\n",
|
| 1257 |
+
" <td>0.908547</td>\n",
|
| 1258 |
+
" <td>0.949753</td>\n",
|
| 1259 |
+
" </tr>\n",
|
| 1260 |
+
" </tbody>\n",
|
| 1261 |
+
"</table><p>"
|
| 1262 |
+
],
|
| 1263 |
+
"text/plain": [
|
| 1264 |
+
"<IPython.core.display.HTML object>"
|
| 1265 |
+
]
|
| 1266 |
+
},
|
| 1267 |
+
"metadata": {},
|
| 1268 |
+
"output_type": "display_data"
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"name": "stderr",
|
| 1272 |
+
"output_type": "stream",
|
| 1273 |
+
"text": [
|
| 1274 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1275 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1276 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1277 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1278 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1279 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1280 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1281 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1282 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1283 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1284 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1285 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1286 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1287 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1288 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1289 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1290 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1291 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1292 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1293 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1294 |
+
]
|
| 1295 |
+
},
|
| 1296 |
+
{
|
| 1297 |
+
"data": {
|
| 1298 |
+
"text/html": [
|
| 1299 |
+
"\n",
|
| 1300 |
+
" <div>\n",
|
| 1301 |
+
" \n",
|
| 1302 |
+
" <progress value='429' max='429' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1303 |
+
" [429/429 00:13]\n",
|
| 1304 |
+
" </div>\n",
|
| 1305 |
+
" "
|
| 1306 |
+
],
|
| 1307 |
+
"text/plain": [
|
| 1308 |
+
"<IPython.core.display.HTML object>"
|
| 1309 |
+
]
|
| 1310 |
+
},
|
| 1311 |
+
"metadata": {},
|
| 1312 |
+
"output_type": "display_data"
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"name": "stderr",
|
| 1316 |
+
"output_type": "stream",
|
| 1317 |
+
"text": [
|
| 1318 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 1319 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1320 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1321 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 1322 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 1323 |
+
]
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"name": "stdout",
|
| 1327 |
+
"output_type": "stream",
|
| 1328 |
+
"text": [
|
| 1329 |
+
"large_intestine\n"
|
| 1330 |
+
]
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"name": "stderr",
|
| 1334 |
+
"output_type": "stream",
|
| 1335 |
+
"text": [
|
| 1336 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1337 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1338 |
+
]
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"data": {
|
| 1342 |
+
"text/html": [
|
| 1343 |
+
"\n",
|
| 1344 |
+
" <div>\n",
|
| 1345 |
+
" \n",
|
| 1346 |
+
" <progress value='33070' max='33070' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1347 |
+
" [33070/33070 43:02, Epoch 10/10]\n",
|
| 1348 |
+
" </div>\n",
|
| 1349 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 1350 |
+
" <thead>\n",
|
| 1351 |
+
" <tr style=\"text-align: left;\">\n",
|
| 1352 |
+
" <th>Epoch</th>\n",
|
| 1353 |
+
" <th>Training Loss</th>\n",
|
| 1354 |
+
" <th>Validation Loss</th>\n",
|
| 1355 |
+
" <th>Accuracy</th>\n",
|
| 1356 |
+
" <th>Macro F1</th>\n",
|
| 1357 |
+
" <th>Weighted F1</th>\n",
|
| 1358 |
+
" </tr>\n",
|
| 1359 |
+
" </thead>\n",
|
| 1360 |
+
" <tbody>\n",
|
| 1361 |
+
" <tr>\n",
|
| 1362 |
+
" <td>1</td>\n",
|
| 1363 |
+
" <td>0.306200</td>\n",
|
| 1364 |
+
" <td>0.312431</td>\n",
|
| 1365 |
+
" <td>0.908266</td>\n",
|
| 1366 |
+
" <td>0.786242</td>\n",
|
| 1367 |
+
" <td>0.900768</td>\n",
|
| 1368 |
+
" </tr>\n",
|
| 1369 |
+
" <tr>\n",
|
| 1370 |
+
" <td>2</td>\n",
|
| 1371 |
+
" <td>0.223900</td>\n",
|
| 1372 |
+
" <td>0.248096</td>\n",
|
| 1373 |
+
" <td>0.925101</td>\n",
|
| 1374 |
+
" <td>0.841251</td>\n",
|
| 1375 |
+
" <td>0.920987</td>\n",
|
| 1376 |
+
" </tr>\n",
|
| 1377 |
+
" <tr>\n",
|
| 1378 |
+
" <td>3</td>\n",
|
| 1379 |
+
" <td>0.173600</td>\n",
|
| 1380 |
+
" <td>0.259997</td>\n",
|
| 1381 |
+
" <td>0.925907</td>\n",
|
| 1382 |
+
" <td>0.850348</td>\n",
|
| 1383 |
+
" <td>0.926290</td>\n",
|
| 1384 |
+
" </tr>\n",
|
| 1385 |
+
" <tr>\n",
|
| 1386 |
+
" <td>4</td>\n",
|
| 1387 |
+
" <td>0.162900</td>\n",
|
| 1388 |
+
" <td>0.282306</td>\n",
|
| 1389 |
+
" <td>0.925000</td>\n",
|
| 1390 |
+
" <td>0.873669</td>\n",
|
| 1391 |
+
" <td>0.925531</td>\n",
|
| 1392 |
+
" </tr>\n",
|
| 1393 |
+
" <tr>\n",
|
| 1394 |
+
" <td>5</td>\n",
|
| 1395 |
+
" <td>0.143400</td>\n",
|
| 1396 |
+
" <td>0.254494</td>\n",
|
| 1397 |
+
" <td>0.937903</td>\n",
|
| 1398 |
+
" <td>0.876749</td>\n",
|
| 1399 |
+
" <td>0.937836</td>\n",
|
| 1400 |
+
" </tr>\n",
|
| 1401 |
+
" <tr>\n",
|
| 1402 |
+
" <td>6</td>\n",
|
| 1403 |
+
" <td>0.104500</td>\n",
|
| 1404 |
+
" <td>0.289942</td>\n",
|
| 1405 |
+
" <td>0.934677</td>\n",
|
| 1406 |
+
" <td>0.875333</td>\n",
|
| 1407 |
+
" <td>0.934339</td>\n",
|
| 1408 |
+
" </tr>\n",
|
| 1409 |
+
" <tr>\n",
|
| 1410 |
+
" <td>7</td>\n",
|
| 1411 |
+
" <td>0.080300</td>\n",
|
| 1412 |
+
" <td>0.313914</td>\n",
|
| 1413 |
+
" <td>0.935484</td>\n",
|
| 1414 |
+
" <td>0.877271</td>\n",
|
| 1415 |
+
" <td>0.934986</td>\n",
|
| 1416 |
+
" </tr>\n",
|
| 1417 |
+
" <tr>\n",
|
| 1418 |
+
" <td>8</td>\n",
|
| 1419 |
+
" <td>0.063500</td>\n",
|
| 1420 |
+
" <td>0.339868</td>\n",
|
| 1421 |
+
" <td>0.936290</td>\n",
|
| 1422 |
+
" <td>0.882267</td>\n",
|
| 1423 |
+
" <td>0.936187</td>\n",
|
| 1424 |
+
" </tr>\n",
|
| 1425 |
+
" <tr>\n",
|
| 1426 |
+
" <td>9</td>\n",
|
| 1427 |
+
" <td>0.042500</td>\n",
|
| 1428 |
+
" <td>0.345784</td>\n",
|
| 1429 |
+
" <td>0.938911</td>\n",
|
| 1430 |
+
" <td>0.882963</td>\n",
|
| 1431 |
+
" <td>0.938682</td>\n",
|
| 1432 |
+
" </tr>\n",
|
| 1433 |
+
" <tr>\n",
|
| 1434 |
+
" <td>10</td>\n",
|
| 1435 |
+
" <td>0.038900</td>\n",
|
| 1436 |
+
" <td>0.352199</td>\n",
|
| 1437 |
+
" <td>0.939516</td>\n",
|
| 1438 |
+
" <td>0.885509</td>\n",
|
| 1439 |
+
" <td>0.939497</td>\n",
|
| 1440 |
+
" </tr>\n",
|
| 1441 |
+
" </tbody>\n",
|
| 1442 |
+
"</table><p>"
|
| 1443 |
+
],
|
| 1444 |
+
"text/plain": [
|
| 1445 |
+
"<IPython.core.display.HTML object>"
|
| 1446 |
+
]
|
| 1447 |
+
},
|
| 1448 |
+
"metadata": {},
|
| 1449 |
+
"output_type": "display_data"
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"name": "stderr",
|
| 1453 |
+
"output_type": "stream",
|
| 1454 |
+
"text": [
|
| 1455 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1456 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1457 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1458 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1459 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1460 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1461 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1462 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1463 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1464 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1465 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1466 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1467 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1468 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1469 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1470 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1471 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1472 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1473 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1474 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1475 |
+
]
|
| 1476 |
+
},
|
| 1477 |
+
{
|
| 1478 |
+
"data": {
|
| 1479 |
+
"text/html": [
|
| 1480 |
+
"\n",
|
| 1481 |
+
" <div>\n",
|
| 1482 |
+
" \n",
|
| 1483 |
+
" <progress value='827' max='827' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1484 |
+
" [827/827 00:26]\n",
|
| 1485 |
+
" </div>\n",
|
| 1486 |
+
" "
|
| 1487 |
+
],
|
| 1488 |
+
"text/plain": [
|
| 1489 |
+
"<IPython.core.display.HTML object>"
|
| 1490 |
+
]
|
| 1491 |
+
},
|
| 1492 |
+
"metadata": {},
|
| 1493 |
+
"output_type": "display_data"
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"name": "stderr",
|
| 1497 |
+
"output_type": "stream",
|
| 1498 |
+
"text": [
|
| 1499 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 1500 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1501 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1502 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 1503 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 1504 |
+
]
|
| 1505 |
+
},
|
| 1506 |
+
{
|
| 1507 |
+
"name": "stdout",
|
| 1508 |
+
"output_type": "stream",
|
| 1509 |
+
"text": [
|
| 1510 |
+
"pancreas\n"
|
| 1511 |
+
]
|
| 1512 |
+
},
|
| 1513 |
+
{
|
| 1514 |
+
"name": "stderr",
|
| 1515 |
+
"output_type": "stream",
|
| 1516 |
+
"text": [
|
| 1517 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1518 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1519 |
+
]
|
| 1520 |
+
},
|
| 1521 |
+
{
|
| 1522 |
+
"data": {
|
| 1523 |
+
"text/html": [
|
| 1524 |
+
"\n",
|
| 1525 |
+
" <div>\n",
|
| 1526 |
+
" \n",
|
| 1527 |
+
" <progress value='18280' max='18280' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1528 |
+
" [18280/18280 23:32, Epoch 10/10]\n",
|
| 1529 |
+
" </div>\n",
|
| 1530 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 1531 |
+
" <thead>\n",
|
| 1532 |
+
" <tr style=\"text-align: left;\">\n",
|
| 1533 |
+
" <th>Epoch</th>\n",
|
| 1534 |
+
" <th>Training Loss</th>\n",
|
| 1535 |
+
" <th>Validation Loss</th>\n",
|
| 1536 |
+
" <th>Accuracy</th>\n",
|
| 1537 |
+
" <th>Macro F1</th>\n",
|
| 1538 |
+
" <th>Weighted F1</th>\n",
|
| 1539 |
+
" </tr>\n",
|
| 1540 |
+
" </thead>\n",
|
| 1541 |
+
" <tbody>\n",
|
| 1542 |
+
" <tr>\n",
|
| 1543 |
+
" <td>1</td>\n",
|
| 1544 |
+
" <td>0.340100</td>\n",
|
| 1545 |
+
" <td>0.343200</td>\n",
|
| 1546 |
+
" <td>0.896244</td>\n",
|
| 1547 |
+
" <td>0.655661</td>\n",
|
| 1548 |
+
" <td>0.879469</td>\n",
|
| 1549 |
+
" </tr>\n",
|
| 1550 |
+
" <tr>\n",
|
| 1551 |
+
" <td>2</td>\n",
|
| 1552 |
+
" <td>0.178300</td>\n",
|
| 1553 |
+
" <td>0.224033</td>\n",
|
| 1554 |
+
" <td>0.930890</td>\n",
|
| 1555 |
+
" <td>0.859772</td>\n",
|
| 1556 |
+
" <td>0.925342</td>\n",
|
| 1557 |
+
" </tr>\n",
|
| 1558 |
+
" <tr>\n",
|
| 1559 |
+
" <td>3</td>\n",
|
| 1560 |
+
" <td>0.154200</td>\n",
|
| 1561 |
+
" <td>0.208034</td>\n",
|
| 1562 |
+
" <td>0.941284</td>\n",
|
| 1563 |
+
" <td>0.887012</td>\n",
|
| 1564 |
+
" <td>0.939485</td>\n",
|
| 1565 |
+
" </tr>\n",
|
| 1566 |
+
" <tr>\n",
|
| 1567 |
+
" <td>4</td>\n",
|
| 1568 |
+
" <td>0.121200</td>\n",
|
| 1569 |
+
" <td>0.216660</td>\n",
|
| 1570 |
+
" <td>0.940372</td>\n",
|
| 1571 |
+
" <td>0.880716</td>\n",
|
| 1572 |
+
" <td>0.939431</td>\n",
|
| 1573 |
+
" </tr>\n",
|
| 1574 |
+
" <tr>\n",
|
| 1575 |
+
" <td>5</td>\n",
|
| 1576 |
+
" <td>0.099900</td>\n",
|
| 1577 |
+
" <td>0.254255</td>\n",
|
| 1578 |
+
" <td>0.940554</td>\n",
|
| 1579 |
+
" <td>0.889088</td>\n",
|
| 1580 |
+
" <td>0.938300</td>\n",
|
| 1581 |
+
" </tr>\n",
|
| 1582 |
+
" <tr>\n",
|
| 1583 |
+
" <td>6</td>\n",
|
| 1584 |
+
" <td>0.065800</td>\n",
|
| 1585 |
+
" <td>0.267429</td>\n",
|
| 1586 |
+
" <td>0.942743</td>\n",
|
| 1587 |
+
" <td>0.897682</td>\n",
|
| 1588 |
+
" <td>0.942815</td>\n",
|
| 1589 |
+
" </tr>\n",
|
| 1590 |
+
" <tr>\n",
|
| 1591 |
+
" <td>7</td>\n",
|
| 1592 |
+
" <td>0.061200</td>\n",
|
| 1593 |
+
" <td>0.282509</td>\n",
|
| 1594 |
+
" <td>0.945478</td>\n",
|
| 1595 |
+
" <td>0.898797</td>\n",
|
| 1596 |
+
" <td>0.943881</td>\n",
|
| 1597 |
+
" </tr>\n",
|
| 1598 |
+
" <tr>\n",
|
| 1599 |
+
" <td>8</td>\n",
|
| 1600 |
+
" <td>0.036800</td>\n",
|
| 1601 |
+
" <td>0.301781</td>\n",
|
| 1602 |
+
" <td>0.943837</td>\n",
|
| 1603 |
+
" <td>0.903816</td>\n",
|
| 1604 |
+
" <td>0.944163</td>\n",
|
| 1605 |
+
" </tr>\n",
|
| 1606 |
+
" <tr>\n",
|
| 1607 |
+
" <td>9</td>\n",
|
| 1608 |
+
" <td>0.035400</td>\n",
|
| 1609 |
+
" <td>0.317026</td>\n",
|
| 1610 |
+
" <td>0.942560</td>\n",
|
| 1611 |
+
" <td>0.902241</td>\n",
|
| 1612 |
+
" <td>0.942071</td>\n",
|
| 1613 |
+
" </tr>\n",
|
| 1614 |
+
" <tr>\n",
|
| 1615 |
+
" <td>10</td>\n",
|
| 1616 |
+
" <td>0.014200</td>\n",
|
| 1617 |
+
" <td>0.313259</td>\n",
|
| 1618 |
+
" <td>0.946754</td>\n",
|
| 1619 |
+
" <td>0.904955</td>\n",
|
| 1620 |
+
" <td>0.946129</td>\n",
|
| 1621 |
+
" </tr>\n",
|
| 1622 |
+
" </tbody>\n",
|
| 1623 |
+
"</table><p>"
|
| 1624 |
+
],
|
| 1625 |
+
"text/plain": [
|
| 1626 |
+
"<IPython.core.display.HTML object>"
|
| 1627 |
+
]
|
| 1628 |
+
},
|
| 1629 |
+
"metadata": {},
|
| 1630 |
+
"output_type": "display_data"
|
| 1631 |
+
},
|
| 1632 |
+
{
|
| 1633 |
+
"name": "stderr",
|
| 1634 |
+
"output_type": "stream",
|
| 1635 |
+
"text": [
|
| 1636 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1637 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1638 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1639 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1640 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1641 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1642 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1643 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1644 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1645 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1646 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1647 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1648 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1649 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1650 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1651 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1652 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1653 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1654 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1655 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1656 |
+
]
|
| 1657 |
+
},
|
| 1658 |
+
{
|
| 1659 |
+
"data": {
|
| 1660 |
+
"text/html": [
|
| 1661 |
+
"\n",
|
| 1662 |
+
" <div>\n",
|
| 1663 |
+
" \n",
|
| 1664 |
+
" <progress value='457' max='457' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1665 |
+
" [457/457 00:11]\n",
|
| 1666 |
+
" </div>\n",
|
| 1667 |
+
" "
|
| 1668 |
+
],
|
| 1669 |
+
"text/plain": [
|
| 1670 |
+
"<IPython.core.display.HTML object>"
|
| 1671 |
+
]
|
| 1672 |
+
},
|
| 1673 |
+
"metadata": {},
|
| 1674 |
+
"output_type": "display_data"
|
| 1675 |
+
},
|
| 1676 |
+
{
|
| 1677 |
+
"name": "stderr",
|
| 1678 |
+
"output_type": "stream",
|
| 1679 |
+
"text": [
|
| 1680 |
+
"Some weights of the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight']\n",
|
| 1681 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1682 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1683 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at /n/home01/ctheodoris/models/210602_111318_geneformer_27M_L6_emb256_SL2048_E3_B12_LR0.001_LSlinear_WU10000_Oadamw_DS12/models/ and are newly initialized: ['bert.pooler.dense.weight', 'bert.pooler.dense.bias', 'classifier.weight', 'classifier.bias']\n",
|
| 1684 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 1685 |
+
]
|
| 1686 |
+
},
|
| 1687 |
+
{
|
| 1688 |
+
"name": "stdout",
|
| 1689 |
+
"output_type": "stream",
|
| 1690 |
+
"text": [
|
| 1691 |
+
"liver\n"
|
| 1692 |
+
]
|
| 1693 |
+
},
|
| 1694 |
+
{
|
| 1695 |
+
"name": "stderr",
|
| 1696 |
+
"output_type": "stream",
|
| 1697 |
+
"text": [
|
| 1698 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1699 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1700 |
+
]
|
| 1701 |
+
},
|
| 1702 |
+
{
|
| 1703 |
+
"data": {
|
| 1704 |
+
"text/html": [
|
| 1705 |
+
"\n",
|
| 1706 |
+
" <div>\n",
|
| 1707 |
+
" \n",
|
| 1708 |
+
" <progress value='18690' max='18690' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1709 |
+
" [18690/18690 26:56, Epoch 10/10]\n",
|
| 1710 |
+
" </div>\n",
|
| 1711 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 1712 |
+
" <thead>\n",
|
| 1713 |
+
" <tr style=\"text-align: left;\">\n",
|
| 1714 |
+
" <th>Epoch</th>\n",
|
| 1715 |
+
" <th>Training Loss</th>\n",
|
| 1716 |
+
" <th>Validation Loss</th>\n",
|
| 1717 |
+
" <th>Accuracy</th>\n",
|
| 1718 |
+
" <th>Macro F1</th>\n",
|
| 1719 |
+
" <th>Weighted F1</th>\n",
|
| 1720 |
+
" </tr>\n",
|
| 1721 |
+
" </thead>\n",
|
| 1722 |
+
" <tbody>\n",
|
| 1723 |
+
" <tr>\n",
|
| 1724 |
+
" <td>1</td>\n",
|
| 1725 |
+
" <td>0.388500</td>\n",
|
| 1726 |
+
" <td>0.385503</td>\n",
|
| 1727 |
+
" <td>0.878188</td>\n",
|
| 1728 |
+
" <td>0.673887</td>\n",
|
| 1729 |
+
" <td>0.871348</td>\n",
|
| 1730 |
+
" </tr>\n",
|
| 1731 |
+
" <tr>\n",
|
| 1732 |
+
" <td>2</td>\n",
|
| 1733 |
+
" <td>0.315900</td>\n",
|
| 1734 |
+
" <td>0.302775</td>\n",
|
| 1735 |
+
" <td>0.907437</td>\n",
|
| 1736 |
+
" <td>0.754182</td>\n",
|
| 1737 |
+
" <td>0.903474</td>\n",
|
| 1738 |
+
" </tr>\n",
|
| 1739 |
+
" <tr>\n",
|
| 1740 |
+
" <td>3</td>\n",
|
| 1741 |
+
" <td>0.242600</td>\n",
|
| 1742 |
+
" <td>0.321844</td>\n",
|
| 1743 |
+
" <td>0.907972</td>\n",
|
| 1744 |
+
" <td>0.779504</td>\n",
|
| 1745 |
+
" <td>0.905881</td>\n",
|
| 1746 |
+
" </tr>\n",
|
| 1747 |
+
" <tr>\n",
|
| 1748 |
+
" <td>4</td>\n",
|
| 1749 |
+
" <td>0.238600</td>\n",
|
| 1750 |
+
" <td>0.323119</td>\n",
|
| 1751 |
+
" <td>0.911539</td>\n",
|
| 1752 |
+
" <td>0.790922</td>\n",
|
| 1753 |
+
" <td>0.910299</td>\n",
|
| 1754 |
+
" </tr>\n",
|
| 1755 |
+
" <tr>\n",
|
| 1756 |
+
" <td>5</td>\n",
|
| 1757 |
+
" <td>0.160100</td>\n",
|
| 1758 |
+
" <td>0.328203</td>\n",
|
| 1759 |
+
" <td>0.915641</td>\n",
|
| 1760 |
+
" <td>0.793490</td>\n",
|
| 1761 |
+
" <td>0.913836</td>\n",
|
| 1762 |
+
" </tr>\n",
|
| 1763 |
+
" <tr>\n",
|
| 1764 |
+
" <td>6</td>\n",
|
| 1765 |
+
" <td>0.163100</td>\n",
|
| 1766 |
+
" <td>0.348942</td>\n",
|
| 1767 |
+
" <td>0.917425</td>\n",
|
| 1768 |
+
" <td>0.813604</td>\n",
|
| 1769 |
+
" <td>0.916911</td>\n",
|
| 1770 |
+
" </tr>\n",
|
| 1771 |
+
" <tr>\n",
|
| 1772 |
+
" <td>7</td>\n",
|
| 1773 |
+
" <td>0.124100</td>\n",
|
| 1774 |
+
" <td>0.373799</td>\n",
|
| 1775 |
+
" <td>0.916890</td>\n",
|
| 1776 |
+
" <td>0.820355</td>\n",
|
| 1777 |
+
" <td>0.916688</td>\n",
|
| 1778 |
+
" </tr>\n",
|
| 1779 |
+
" <tr>\n",
|
| 1780 |
+
" <td>8</td>\n",
|
| 1781 |
+
" <td>0.118700</td>\n",
|
| 1782 |
+
" <td>0.399474</td>\n",
|
| 1783 |
+
" <td>0.916890</td>\n",
|
| 1784 |
+
" <td>0.818839</td>\n",
|
| 1785 |
+
" <td>0.916640</td>\n",
|
| 1786 |
+
" </tr>\n",
|
| 1787 |
+
" <tr>\n",
|
| 1788 |
+
" <td>9</td>\n",
|
| 1789 |
+
" <td>0.066800</td>\n",
|
| 1790 |
+
" <td>0.414363</td>\n",
|
| 1791 |
+
" <td>0.917603</td>\n",
|
| 1792 |
+
" <td>0.830703</td>\n",
|
| 1793 |
+
" <td>0.917226</td>\n",
|
| 1794 |
+
" </tr>\n",
|
| 1795 |
+
" <tr>\n",
|
| 1796 |
+
" <td>10</td>\n",
|
| 1797 |
+
" <td>0.075800</td>\n",
|
| 1798 |
+
" <td>0.413828</td>\n",
|
| 1799 |
+
" <td>0.919030</td>\n",
|
| 1800 |
+
" <td>0.828149</td>\n",
|
| 1801 |
+
" <td>0.918506</td>\n",
|
| 1802 |
+
" </tr>\n",
|
| 1803 |
+
" </tbody>\n",
|
| 1804 |
+
"</table><p>"
|
| 1805 |
+
],
|
| 1806 |
+
"text/plain": [
|
| 1807 |
+
"<IPython.core.display.HTML object>"
|
| 1808 |
+
]
|
| 1809 |
+
},
|
| 1810 |
+
"metadata": {},
|
| 1811 |
+
"output_type": "display_data"
|
| 1812 |
+
},
|
| 1813 |
+
{
|
| 1814 |
+
"name": "stderr",
|
| 1815 |
+
"output_type": "stream",
|
| 1816 |
+
"text": [
|
| 1817 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1818 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1819 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1820 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1821 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1822 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1823 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1824 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1825 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1826 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1827 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1828 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1829 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1830 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1831 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1832 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1833 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1834 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n",
|
| 1835 |
+
"<ipython-input-16-7f7bd5a45820>:54: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
|
| 1836 |
+
" batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}\n"
|
| 1837 |
+
]
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"data": {
|
| 1841 |
+
"text/html": [
|
| 1842 |
+
"\n",
|
| 1843 |
+
" <div>\n",
|
| 1844 |
+
" \n",
|
| 1845 |
+
" <progress value='936' max='468' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 1846 |
+
" [468/468 00:39]\n",
|
| 1847 |
+
" </div>\n",
|
| 1848 |
+
" "
|
| 1849 |
+
],
|
| 1850 |
+
"text/plain": [
|
| 1851 |
+
"<IPython.core.display.HTML object>"
|
| 1852 |
+
]
|
| 1853 |
+
},
|
| 1854 |
+
"metadata": {},
|
| 1855 |
+
"output_type": "display_data"
|
| 1856 |
+
}
|
| 1857 |
+
],
|
| 1858 |
+
"source": [
|
| 1859 |
+
"for organ in organ_list:\n",
|
| 1860 |
+
" print(organ)\n",
|
| 1861 |
+
" organ_trainset = trainset_dict[organ]\n",
|
| 1862 |
+
" organ_evalset = evalset_dict[organ]\n",
|
| 1863 |
+
" organ_label_dict = traintargetdict_dict[organ]\n",
|
| 1864 |
+
" \n",
|
| 1865 |
+
" # set logging steps\n",
|
| 1866 |
+
" logging_steps = round(len(organ_trainset)/geneformer_batch_size/10)\n",
|
| 1867 |
+
" \n",
|
| 1868 |
+
" # reload pretrained model\n",
|
| 1869 |
+
" model = BertForSequenceClassification.from_pretrained(\"/path/to/pretrained_model/\", \n",
|
| 1870 |
+
" num_labels=len(organ_label_dict.keys()),\n",
|
| 1871 |
+
" output_attentions = False,\n",
|
| 1872 |
+
" output_hidden_states = False).to(\"cuda\")\n",
|
| 1873 |
+
" \n",
|
| 1874 |
+
" # create output directory\n",
|
| 1875 |
+
" current_date = datetime.datetime.now()\n",
|
| 1876 |
+
" datestamp = f\"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}\"\n",
|
| 1877 |
+
" output_dir = f\"/path/to/models/{datestamp}_geneformer_CellClassifier_{organ}_L{max_input_size}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_E{epochs}_O{optimizer}_F{freeze_layers}/\"\n",
|
| 1878 |
+
" \n",
|
| 1879 |
+
" # ensure not overwriting previously saved model\n",
|
| 1880 |
+
" saved_model_test = os.path.join(output_dir, f\"pytorch_model.bin\")\n",
|
| 1881 |
+
" if os.path.isfile(saved_model_test) == True:\n",
|
| 1882 |
+
" raise Exception(\"Model already saved to this directory.\")\n",
|
| 1883 |
+
"\n",
|
| 1884 |
+
" # make output directories\n",
|
| 1885 |
+
" subprocess.call(f'mkdir {output_dir}', shell=True)\n",
|
| 1886 |
+
" \n",
|
| 1887 |
+
" # set training arguments\n",
|
| 1888 |
+
" training_args = {\n",
|
| 1889 |
+
" \"learning_rate\": max_lr,\n",
|
| 1890 |
+
" \"do_train\": True,\n",
|
| 1891 |
+
" \"do_eval\": True,\n",
|
| 1892 |
+
" \"evaluation_strategy\": \"epoch\",\n",
|
| 1893 |
+
" \"logging_steps\": logging_steps,\n",
|
| 1894 |
+
" \"group_by_length\": True,\n",
|
| 1895 |
+
" \"length_column_name\": \"length\",\n",
|
| 1896 |
+
" \"disable_tqdm\": False,\n",
|
| 1897 |
+
" \"lr_scheduler_type\": lr_schedule_fn,\n",
|
| 1898 |
+
" \"warmup_steps\": warmup_steps,\n",
|
| 1899 |
+
" \"weight_decay\": 0.001,\n",
|
| 1900 |
+
" \"per_device_train_batch_size\": geneformer_batch_size,\n",
|
| 1901 |
+
" \"per_device_eval_batch_size\": geneformer_batch_size,\n",
|
| 1902 |
+
" \"num_train_epochs\": epochs,\n",
|
| 1903 |
+
" \"load_best_model_at_end\": True,\n",
|
| 1904 |
+
" \"output_dir\": output_dir,\n",
|
| 1905 |
+
" }\n",
|
| 1906 |
+
" \n",
|
| 1907 |
+
" training_args_init = TrainingArguments(**training_args)\n",
|
| 1908 |
+
"\n",
|
| 1909 |
+
" # create the trainer\n",
|
| 1910 |
+
" trainer = Trainer(\n",
|
| 1911 |
+
" model=model,\n",
|
| 1912 |
+
" args=training_args_init,\n",
|
| 1913 |
+
" data_collator=DataCollatorForCellClassification(),\n",
|
| 1914 |
+
" train_dataset=organ_trainset,\n",
|
| 1915 |
+
" eval_dataset=organ_evalset,\n",
|
| 1916 |
+
" compute_metrics=compute_metrics\n",
|
| 1917 |
+
" )\n",
|
| 1918 |
+
" # train the cell type classifier\n",
|
| 1919 |
+
" trainer.train()\n",
|
| 1920 |
+
" predictions = trainer.predict(organ_evalset)\n",
|
| 1921 |
+
" with open(f\"{output_dir}predictions.pickle\", \"wb\") as fp:\n",
|
| 1922 |
+
" pickle.dump(predictions, fp)\n",
|
| 1923 |
+
" trainer.save_metrics(\"eval\",predictions.metrics)\n",
|
| 1924 |
+
" trainer.save_model(output_dir)"
|
| 1925 |
+
]
|
| 1926 |
+
}
|
| 1927 |
+
],
|
| 1928 |
+
"metadata": {
|
| 1929 |
+
"kernelspec": {
|
| 1930 |
+
"display_name": "Python 3.8.6 64-bit ('3.8.6')",
|
| 1931 |
+
"language": "python",
|
| 1932 |
+
"name": "python3"
|
| 1933 |
+
},
|
| 1934 |
+
"language_info": {
|
| 1935 |
+
"codemirror_mode": {
|
| 1936 |
+
"name": "ipython",
|
| 1937 |
+
"version": 3
|
| 1938 |
+
},
|
| 1939 |
+
"file_extension": ".py",
|
| 1940 |
+
"mimetype": "text/x-python",
|
| 1941 |
+
"name": "python",
|
| 1942 |
+
"nbconvert_exporter": "python",
|
| 1943 |
+
"pygments_lexer": "ipython3",
|
| 1944 |
+
"version": "3.8.6"
|
| 1945 |
+
},
|
| 1946 |
+
"vscode": {
|
| 1947 |
+
"interpreter": {
|
| 1948 |
+
"hash": "eba1599a1f7e611c14c87ccff6793920aa63510b01fc0e229d6dd014149b8829"
|
| 1949 |
+
}
|
| 1950 |
+
}
|
| 1951 |
+
},
|
| 1952 |
+
"nbformat": 4,
|
| 1953 |
+
"nbformat_minor": 5
|
| 1954 |
+
}
|
examples/pretrain_geneformer_w_deepspeed.py
CHANGED
|
@@ -23,7 +23,7 @@ import torch
|
|
| 23 |
from datasets import load_from_disk
|
| 24 |
from transformers import BertConfig, BertForMaskedLM, TrainingArguments
|
| 25 |
|
| 26 |
-
from
|
| 27 |
|
| 28 |
seed_num = 0
|
| 29 |
random.seed(seed_num)
|
|
@@ -149,7 +149,7 @@ training_args = TrainingArguments(**training_args)
|
|
| 149 |
print("Starting training.")
|
| 150 |
|
| 151 |
# define the trainer
|
| 152 |
-
trainer =
|
| 153 |
model=model,
|
| 154 |
args=training_args,
|
| 155 |
# pretraining corpus (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048.dataset)
|
|
|
|
| 23 |
from datasets import load_from_disk
|
| 24 |
from transformers import BertConfig, BertForMaskedLM, TrainingArguments
|
| 25 |
|
| 26 |
+
from geneformer import GeneformerPretrainer
|
| 27 |
|
| 28 |
seed_num = 0
|
| 29 |
random.seed(seed_num)
|
|
|
|
| 149 |
print("Starting training.")
|
| 150 |
|
| 151 |
# define the trainer
|
| 152 |
+
trainer = GeneformerPretrainer(
|
| 153 |
model=model,
|
| 154 |
args=training_args,
|
| 155 |
# pretraining corpus (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048.dataset)
|
geneformer/__init__.py
CHANGED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import tokenizer
|
| 2 |
+
from . import pretrainer
|
| 3 |
+
from . import collator_for_cell_classification
|
| 4 |
+
from . import collator_for_gene_classification
|
| 5 |
+
from .tokenizer import TranscriptomeTokenizer
|
| 6 |
+
from .pretrainer import GeneformerPretrainer
|
| 7 |
+
from .collator_for_gene_classification import DataCollatorForGeneClassification
|
| 8 |
+
from .collator_for_cell_classification import DataCollatorForCellClassification
|
geneformer/collator_for_cell_classification.py
ADDED
|
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Geneformer collator for cell classification.
|
| 3 |
+
|
| 4 |
+
Huggingface data collator modified to accommodate single-cell transcriptomics data for cell classification.
|
| 5 |
+
"""
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import warnings
|
| 9 |
+
from enum import Enum
|
| 10 |
+
from typing import Dict, List, Optional, Union
|
| 11 |
+
|
| 12 |
+
from transformers import (
|
| 13 |
+
DataCollatorForTokenClassification,
|
| 14 |
+
SpecialTokensMixin,
|
| 15 |
+
BatchEncoding,
|
| 16 |
+
)
|
| 17 |
+
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
| 18 |
+
from transformers.utils.generic import _is_tensorflow, _is_torch
|
| 19 |
+
|
| 20 |
+
from .pretrainer import token_dictionary
|
| 21 |
+
|
| 22 |
+
EncodedInput = List[int]
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
VERY_LARGE_INTEGER = int(
|
| 25 |
+
1e30
|
| 26 |
+
) # This is used to set the max input length for a model with infinite size input
|
| 27 |
+
LARGE_INTEGER = int(
|
| 28 |
+
1e20
|
| 29 |
+
) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
|
| 30 |
+
|
| 31 |
+
# precollator functions
|
| 32 |
+
|
| 33 |
+
def run_once(f):
|
| 34 |
+
def wrapper(*args, **kwargs):
|
| 35 |
+
if not wrapper.has_run:
|
| 36 |
+
wrapper.has_run = True
|
| 37 |
+
return f(*args, **kwargs)
|
| 38 |
+
wrapper.has_run = False
|
| 39 |
+
return wrapper
|
| 40 |
+
|
| 41 |
+
@run_once
|
| 42 |
+
def check_output_once(output):
|
| 43 |
+
return print(output)
|
| 44 |
+
|
| 45 |
+
class ExplicitEnum(Enum):
|
| 46 |
+
"""
|
| 47 |
+
Enum with more explicit error message for missing values.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
@classmethod
|
| 51 |
+
def _missing_(cls, value):
|
| 52 |
+
raise ValueError(
|
| 53 |
+
"%r is not a valid %s, please select one of %s"
|
| 54 |
+
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
class TruncationStrategy(ExplicitEnum):
|
| 58 |
+
"""
|
| 59 |
+
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
| 60 |
+
tab-completion in an IDE.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
ONLY_FIRST = "only_first"
|
| 64 |
+
ONLY_SECOND = "only_second"
|
| 65 |
+
LONGEST_FIRST = "longest_first"
|
| 66 |
+
DO_NOT_TRUNCATE = "do_not_truncate"
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class PaddingStrategy(ExplicitEnum):
|
| 71 |
+
"""
|
| 72 |
+
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
|
| 73 |
+
in an IDE.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
LONGEST = "longest"
|
| 77 |
+
MAX_LENGTH = "max_length"
|
| 78 |
+
DO_NOT_PAD = "do_not_pad"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class TensorType(ExplicitEnum):
|
| 83 |
+
"""
|
| 84 |
+
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
| 85 |
+
tab-completion in an IDE.
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
PYTORCH = "pt"
|
| 89 |
+
TENSORFLOW = "tf"
|
| 90 |
+
NUMPY = "np"
|
| 91 |
+
JAX = "jax"
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class PrecollatorForCellClassification(SpecialTokensMixin):
|
| 95 |
+
mask_token = "<mask>"
|
| 96 |
+
mask_token_id = token_dictionary.get("<mask>")
|
| 97 |
+
pad_token = "<pad>"
|
| 98 |
+
pad_token_id = token_dictionary.get("<pad>")
|
| 99 |
+
padding_side = "right"
|
| 100 |
+
all_special_ids = [
|
| 101 |
+
token_dictionary.get("<mask>"),
|
| 102 |
+
token_dictionary.get("<pad>")
|
| 103 |
+
]
|
| 104 |
+
model_input_names = ["input_ids"]
|
| 105 |
+
|
| 106 |
+
def _get_padding_truncation_strategies(
|
| 107 |
+
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
| 108 |
+
):
|
| 109 |
+
"""
|
| 110 |
+
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
| 111 |
+
and pad_to_max_length) and behaviors.
|
| 112 |
+
"""
|
| 113 |
+
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
| 114 |
+
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
| 115 |
+
|
| 116 |
+
# Backward compatibility for previous behavior, maybe we should deprecate it:
|
| 117 |
+
# If you only set max_length, it activates truncation for max_length
|
| 118 |
+
if max_length is not None and padding is False and truncation is False:
|
| 119 |
+
if verbose:
|
| 120 |
+
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
|
| 121 |
+
logger.warning(
|
| 122 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, "
|
| 123 |
+
"please use `truncation=True` to explicitly truncate examples to max length. "
|
| 124 |
+
"Defaulting to 'longest_first' truncation strategy. "
|
| 125 |
+
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy "
|
| 126 |
+
"more precisely by providing a specific strategy to `truncation`."
|
| 127 |
+
)
|
| 128 |
+
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
| 129 |
+
truncation = "longest_first"
|
| 130 |
+
|
| 131 |
+
# Get padding strategy
|
| 132 |
+
if padding is False and old_pad_to_max_length:
|
| 133 |
+
if verbose:
|
| 134 |
+
warnings.warn(
|
| 135 |
+
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
| 136 |
+
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
| 137 |
+
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
| 138 |
+
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
| 139 |
+
"maximal input size of the model (e.g. 512 for Bert).",
|
| 140 |
+
FutureWarning,
|
| 141 |
+
)
|
| 142 |
+
if max_length is None:
|
| 143 |
+
padding_strategy = PaddingStrategy.LONGEST
|
| 144 |
+
else:
|
| 145 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
| 146 |
+
elif padding is not False:
|
| 147 |
+
if padding is True:
|
| 148 |
+
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
| 149 |
+
elif not isinstance(padding, PaddingStrategy):
|
| 150 |
+
padding_strategy = PaddingStrategy(padding)
|
| 151 |
+
elif isinstance(padding, PaddingStrategy):
|
| 152 |
+
padding_strategy = padding
|
| 153 |
+
else:
|
| 154 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
| 155 |
+
|
| 156 |
+
# Get truncation strategy
|
| 157 |
+
if truncation is False and old_truncation_strategy != "do_not_truncate":
|
| 158 |
+
if verbose:
|
| 159 |
+
warnings.warn(
|
| 160 |
+
"The `truncation_strategy` argument is deprecated and will be removed in a future version, "
|
| 161 |
+
"use `truncation=True` to truncate examples to a max length. You can give a specific "
|
| 162 |
+
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the "
|
| 163 |
+
"maximal input size of the model (e.g. 512 for Bert). "
|
| 164 |
+
" If you have pairs of inputs, you can give a specific truncation strategy selected among "
|
| 165 |
+
"`truncation='only_first'` (will only truncate the first sentence in the pairs) "
|
| 166 |
+
"`truncation='only_second'` (will only truncate the second sentence in the pairs) "
|
| 167 |
+
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).",
|
| 168 |
+
FutureWarning,
|
| 169 |
+
)
|
| 170 |
+
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
| 171 |
+
elif truncation is not False:
|
| 172 |
+
if truncation is True:
|
| 173 |
+
truncation_strategy = (
|
| 174 |
+
TruncationStrategy.LONGEST_FIRST
|
| 175 |
+
) # Default to truncate the longest sequences in pairs of inputs
|
| 176 |
+
elif not isinstance(truncation, TruncationStrategy):
|
| 177 |
+
truncation_strategy = TruncationStrategy(truncation)
|
| 178 |
+
elif isinstance(truncation, TruncationStrategy):
|
| 179 |
+
truncation_strategy = truncation
|
| 180 |
+
else:
|
| 181 |
+
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
| 182 |
+
|
| 183 |
+
# Set max length if needed
|
| 184 |
+
if max_length is None:
|
| 185 |
+
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
| 186 |
+
if self.model_max_length > LARGE_INTEGER:
|
| 187 |
+
if verbose:
|
| 188 |
+
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
|
| 189 |
+
logger.warning(
|
| 190 |
+
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
| 191 |
+
"Default to no padding."
|
| 192 |
+
)
|
| 193 |
+
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
| 194 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
| 195 |
+
else:
|
| 196 |
+
max_length = self.model_max_length
|
| 197 |
+
|
| 198 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
| 199 |
+
if self.model_max_length > LARGE_INTEGER:
|
| 200 |
+
if verbose:
|
| 201 |
+
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
|
| 202 |
+
logger.warning(
|
| 203 |
+
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
| 204 |
+
"Default to no truncation."
|
| 205 |
+
)
|
| 206 |
+
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
|
| 207 |
+
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
| 208 |
+
else:
|
| 209 |
+
max_length = self.model_max_length
|
| 210 |
+
|
| 211 |
+
# Test if we have a padding token
|
| 212 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
|
| 213 |
+
raise ValueError(
|
| 214 |
+
"Asking to pad but the tokenizer does not have a padding token. "
|
| 215 |
+
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
| 216 |
+
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
|
| 220 |
+
if (
|
| 221 |
+
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
| 222 |
+
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
| 223 |
+
and pad_to_multiple_of is not None
|
| 224 |
+
and max_length is not None
|
| 225 |
+
and (max_length % pad_to_multiple_of != 0)
|
| 226 |
+
):
|
| 227 |
+
raise ValueError(
|
| 228 |
+
f"Truncation and padding are both activated but "
|
| 229 |
+
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
return padding_strategy, truncation_strategy, max_length, kwargs
|
| 233 |
+
|
| 234 |
+
def pad(
|
| 235 |
+
self,
|
| 236 |
+
encoded_inputs: Union[
|
| 237 |
+
BatchEncoding,
|
| 238 |
+
List[BatchEncoding],
|
| 239 |
+
Dict[str, EncodedInput],
|
| 240 |
+
Dict[str, List[EncodedInput]],
|
| 241 |
+
List[Dict[str, EncodedInput]],
|
| 242 |
+
],
|
| 243 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
| 244 |
+
max_length: Optional[int] = None,
|
| 245 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 246 |
+
return_attention_mask: Optional[bool] = True,
|
| 247 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 248 |
+
verbose: bool = True,
|
| 249 |
+
) -> BatchEncoding:
|
| 250 |
+
"""
|
| 251 |
+
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
| 252 |
+
in the batch.
|
| 253 |
+
|
| 254 |
+
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
| 255 |
+
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
| 256 |
+
|
| 257 |
+
.. note::
|
| 258 |
+
|
| 259 |
+
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
| 260 |
+
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
| 261 |
+
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
| 265 |
+
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
| 266 |
+
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
| 267 |
+
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
| 268 |
+
well as in a PyTorch Dataloader collate function.
|
| 269 |
+
|
| 270 |
+
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
| 271 |
+
see the note above for the return type.
|
| 272 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 273 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 274 |
+
index) among:
|
| 275 |
+
|
| 276 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
| 277 |
+
single sequence if provided).
|
| 278 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 279 |
+
maximum acceptable input length for the model if that argument is not provided.
|
| 280 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 281 |
+
different lengths).
|
| 282 |
+
max_length (:obj:`int`, `optional`):
|
| 283 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 284 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 285 |
+
If set will pad the sequence to a multiple of the provided value.
|
| 286 |
+
|
| 287 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
| 288 |
+
>= 7.5 (Volta).
|
| 289 |
+
return_attention_mask (:obj:`bool`, `optional`):
|
| 290 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
| 291 |
+
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
| 292 |
+
|
| 293 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
| 294 |
+
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`):
|
| 295 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
| 296 |
+
|
| 297 |
+
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
| 298 |
+
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
| 299 |
+
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
| 300 |
+
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
| 301 |
+
Whether or not to print more information and warnings.
|
| 302 |
+
"""
|
| 303 |
+
# If we have a list of dicts, let's convert it in a dict of lists
|
| 304 |
+
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
| 305 |
+
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
| 306 |
+
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
| 307 |
+
|
| 308 |
+
# The model's main input name, usually `input_ids`, has be passed for padding
|
| 309 |
+
if self.model_input_names[0] not in encoded_inputs:
|
| 310 |
+
raise ValueError(
|
| 311 |
+
"You should supply an encoding or a list of encodings to this method"
|
| 312 |
+
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 316 |
+
|
| 317 |
+
if not required_input:
|
| 318 |
+
if return_attention_mask:
|
| 319 |
+
encoded_inputs["attention_mask"] = []
|
| 320 |
+
return encoded_inputs
|
| 321 |
+
|
| 322 |
+
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
| 323 |
+
# and rebuild them afterwards if no return_tensors is specified
|
| 324 |
+
# Note that we lose the specific device the tensor may be on for PyTorch
|
| 325 |
+
|
| 326 |
+
first_element = required_input[0]
|
| 327 |
+
if isinstance(first_element, (list, tuple)):
|
| 328 |
+
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
| 329 |
+
index = 0
|
| 330 |
+
while len(required_input[index]) == 0:
|
| 331 |
+
index += 1
|
| 332 |
+
if index < len(required_input):
|
| 333 |
+
first_element = required_input[index][0]
|
| 334 |
+
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
| 335 |
+
if not isinstance(first_element, (int, list, tuple)):
|
| 336 |
+
if is_tf_available() and _is_tensorflow(first_element):
|
| 337 |
+
return_tensors = "tf" if return_tensors is None else return_tensors
|
| 338 |
+
elif is_torch_available() and _is_torch(first_element):
|
| 339 |
+
return_tensors = "pt" if return_tensors is None else return_tensors
|
| 340 |
+
elif isinstance(first_element, np.ndarray):
|
| 341 |
+
return_tensors = "np" if return_tensors is None else return_tensors
|
| 342 |
+
else:
|
| 343 |
+
raise ValueError(
|
| 344 |
+
f"type of {first_element} unknown: {type(first_element)}. "
|
| 345 |
+
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
for key, value in encoded_inputs.items():
|
| 349 |
+
encoded_inputs[key] = to_py_obj(value)
|
| 350 |
+
|
| 351 |
+
# Convert padding_strategy in PaddingStrategy
|
| 352 |
+
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
| 353 |
+
padding=padding, max_length=max_length, verbose=verbose
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 357 |
+
if required_input and not isinstance(required_input[0], (list, tuple)):
|
| 358 |
+
encoded_inputs = self._pad(
|
| 359 |
+
encoded_inputs,
|
| 360 |
+
max_length=max_length,
|
| 361 |
+
padding_strategy=padding_strategy,
|
| 362 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 363 |
+
return_attention_mask=return_attention_mask,
|
| 364 |
+
)
|
| 365 |
+
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
| 366 |
+
|
| 367 |
+
batch_size = len(required_input)
|
| 368 |
+
assert all(
|
| 369 |
+
len(v) == batch_size for v in encoded_inputs.values()
|
| 370 |
+
), "Some items in the output dictionary have a different batch size than others."
|
| 371 |
+
|
| 372 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
| 373 |
+
max_length = max(len(inputs) for inputs in required_input)
|
| 374 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
| 375 |
+
|
| 376 |
+
batch_outputs = {}
|
| 377 |
+
for i in range(batch_size):
|
| 378 |
+
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
| 379 |
+
outputs = self._pad(
|
| 380 |
+
inputs,
|
| 381 |
+
max_length=max_length,
|
| 382 |
+
padding_strategy=padding_strategy,
|
| 383 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 384 |
+
return_attention_mask=return_attention_mask,
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
for key, value in outputs.items():
|
| 388 |
+
if key not in batch_outputs:
|
| 389 |
+
batch_outputs[key] = []
|
| 390 |
+
batch_outputs[key].append(value)
|
| 391 |
+
del batch_outputs["label"]
|
| 392 |
+
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
| 393 |
+
|
| 394 |
+
def _pad(
|
| 395 |
+
self,
|
| 396 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 397 |
+
max_length: Optional[int] = None,
|
| 398 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
| 399 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 400 |
+
return_attention_mask: Optional[bool] = True,
|
| 401 |
+
) -> dict:
|
| 402 |
+
"""
|
| 403 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
| 407 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
| 408 |
+
Will truncate by taking into account the special tokens.
|
| 409 |
+
padding_strategy: PaddingStrategy to use for padding.
|
| 410 |
+
|
| 411 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
| 412 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
| 413 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
| 414 |
+
The tokenizer padding sides are defined in self.padding_side:
|
| 415 |
+
|
| 416 |
+
- 'left': pads on the left of the sequences
|
| 417 |
+
- 'right': pads on the right of the sequences
|
| 418 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
| 419 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
| 420 |
+
>= 7.5 (Volta).
|
| 421 |
+
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
| 422 |
+
"""
|
| 423 |
+
# Load from model defaults
|
| 424 |
+
if return_attention_mask is None:
|
| 425 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
| 426 |
+
|
| 427 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 428 |
+
|
| 429 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
| 430 |
+
max_length = len(required_input)
|
| 431 |
+
|
| 432 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
| 433 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
| 434 |
+
|
| 435 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
| 436 |
+
|
| 437 |
+
if needs_to_be_padded:
|
| 438 |
+
difference = max_length - len(required_input)
|
| 439 |
+
if self.padding_side == "right":
|
| 440 |
+
if return_attention_mask:
|
| 441 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
| 442 |
+
if "token_type_ids" in encoded_inputs:
|
| 443 |
+
encoded_inputs["token_type_ids"] = (
|
| 444 |
+
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
| 445 |
+
)
|
| 446 |
+
if "special_tokens_mask" in encoded_inputs:
|
| 447 |
+
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
| 448 |
+
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
| 449 |
+
elif self.padding_side == "left":
|
| 450 |
+
if return_attention_mask:
|
| 451 |
+
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
| 452 |
+
if "token_type_ids" in encoded_inputs:
|
| 453 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
| 454 |
+
"token_type_ids"
|
| 455 |
+
]
|
| 456 |
+
if "special_tokens_mask" in encoded_inputs:
|
| 457 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
| 458 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
| 459 |
+
else:
|
| 460 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
| 461 |
+
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
| 462 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
| 463 |
+
|
| 464 |
+
# check_output_once(encoded_inputs)
|
| 465 |
+
|
| 466 |
+
return encoded_inputs
|
| 467 |
+
|
| 468 |
+
def get_special_tokens_mask(
|
| 469 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 470 |
+
) -> List[int]:
|
| 471 |
+
"""
|
| 472 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 473 |
+
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
| 474 |
+
Args:
|
| 475 |
+
token_ids_0 (:obj:`List[int]`):
|
| 476 |
+
List of ids of the first sequence.
|
| 477 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
| 478 |
+
List of ids of the second sequence.
|
| 479 |
+
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 480 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 481 |
+
Returns:
|
| 482 |
+
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 483 |
+
"""
|
| 484 |
+
assert already_has_special_tokens and token_ids_1 is None, (
|
| 485 |
+
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
| 486 |
+
"Please use a slow (full python) tokenizer to activate this argument."
|
| 487 |
+
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
| 488 |
+
"to get the special tokens mask in any tokenizer. "
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
all_special_ids = self.all_special_ids # cache the property
|
| 492 |
+
|
| 493 |
+
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]
|
| 494 |
+
|
| 495 |
+
return special_tokens_mask
|
| 496 |
+
|
| 497 |
+
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
|
| 498 |
+
"""
|
| 499 |
+
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
| 500 |
+
vocabulary.
|
| 501 |
+
Args:
|
| 502 |
+
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
|
| 503 |
+
Returns:
|
| 504 |
+
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
|
| 505 |
+
"""
|
| 506 |
+
if tokens is None:
|
| 507 |
+
return None
|
| 508 |
+
|
| 509 |
+
if isinstance(tokens, str):
|
| 510 |
+
return self._convert_token_to_id_with_added_voc(tokens)
|
| 511 |
+
|
| 512 |
+
ids = []
|
| 513 |
+
for token in tokens:
|
| 514 |
+
ids.append(self._convert_token_to_id_with_added_voc(token))
|
| 515 |
+
return ids
|
| 516 |
+
|
| 517 |
+
def _convert_token_to_id_with_added_voc(self, token):
|
| 518 |
+
if token is None:
|
| 519 |
+
return None
|
| 520 |
+
|
| 521 |
+
return token_dictionary.get(token)
|
| 522 |
+
|
| 523 |
+
def __len__(self):
|
| 524 |
+
return len(token_dictionary)
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
# collator functions
|
| 528 |
+
|
| 529 |
+
class DataCollatorForCellClassification(DataCollatorForTokenClassification):
|
| 530 |
+
"""
|
| 531 |
+
Data collator that will dynamically pad the inputs received, as well as the labels.
|
| 532 |
+
Args:
|
| 533 |
+
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
| 534 |
+
The tokenizer used for encoding the data.
|
| 535 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 536 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
| 537 |
+
among:
|
| 538 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 539 |
+
sequence if provided).
|
| 540 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 541 |
+
maximum acceptable input length for the model if that argument is not provided.
|
| 542 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 543 |
+
different lengths).
|
| 544 |
+
max_length (:obj:`int`, `optional`):
|
| 545 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 546 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 547 |
+
If set will pad the sequence to a multiple of the provided value.
|
| 548 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
| 549 |
+
7.5 (Volta).
|
| 550 |
+
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
| 551 |
+
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
| 552 |
+
"""
|
| 553 |
+
|
| 554 |
+
tokenizer: PrecollatorForCellClassification()
|
| 555 |
+
padding: Union[bool, str, PaddingStrategy] = True
|
| 556 |
+
max_length: Optional[int] = None
|
| 557 |
+
pad_to_multiple_of: Optional[int] = None
|
| 558 |
+
label_pad_token_id: int = -100
|
| 559 |
+
|
| 560 |
+
def __call__(self, features):
|
| 561 |
+
label_name = "label" if "label" in features[0].keys() else "labels"
|
| 562 |
+
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
| 563 |
+
batch = self.tokenizer.pad(
|
| 564 |
+
features,
|
| 565 |
+
padding=self.padding,
|
| 566 |
+
max_length=self.max_length,
|
| 567 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 568 |
+
return_tensors="pt",
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
# Special handling for labels.
|
| 572 |
+
# Ensure that tensor is created with the correct type
|
| 573 |
+
# (it should be automatically the case, but let's make sure of it.)
|
| 574 |
+
first = features[0]
|
| 575 |
+
if "label" in first and first["label"] is not None:
|
| 576 |
+
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
| 577 |
+
dtype = torch.long if isinstance(label, int) else torch.float
|
| 578 |
+
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
| 579 |
+
|
| 580 |
+
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
| 581 |
+
return batch
|
geneformer/{trainer.py → pretrainer.py}
RENAMED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
-
Geneformer
|
| 3 |
|
| 4 |
-
Huggingface
|
| 5 |
"""
|
| 6 |
import collections
|
| 7 |
import math
|
|
@@ -589,7 +589,7 @@ class GeneformerPreCollator(SpecialTokensMixin):
|
|
| 589 |
return len(self.token_dictionary)
|
| 590 |
|
| 591 |
|
| 592 |
-
class
|
| 593 |
def __init__(self, *args, **kwargs):
|
| 594 |
data_collator = kwargs.get("data_collator")
|
| 595 |
token_dictionary = kwargs.get("token_dictionary")
|
|
|
|
| 1 |
"""
|
| 2 |
+
Geneformer precollator and pretrainer.
|
| 3 |
|
| 4 |
+
Huggingface data collator and trainer modified to accommodate single-cell transcriptomics data.
|
| 5 |
"""
|
| 6 |
import collections
|
| 7 |
import math
|
|
|
|
| 589 |
return len(self.token_dictionary)
|
| 590 |
|
| 591 |
|
| 592 |
+
class GeneformerPretrainer(Trainer):
|
| 593 |
def __init__(self, *args, **kwargs):
|
| 594 |
data_collator = kwargs.get("data_collator")
|
| 595 |
token_dictionary = kwargs.get("token_dictionary")
|
geneformer/tokenizer.py
CHANGED
|
@@ -2,8 +2,8 @@
|
|
| 2 |
Geneformer tokenizer.
|
| 3 |
|
| 4 |
Usage:
|
| 5 |
-
from geneformer
|
| 6 |
-
tk =
|
| 7 |
tk.tokenize_data("loom_data_directory", "output_directory", "output_prefix")
|
| 8 |
"""
|
| 9 |
|
|
@@ -32,7 +32,7 @@ def tokenize_cell(gene_vector, gene_tokens):
|
|
| 32 |
return sentence_tokens
|
| 33 |
|
| 34 |
|
| 35 |
-
class
|
| 36 |
def __init__(
|
| 37 |
self,
|
| 38 |
custom_attr_name_dict,
|
|
|
|
| 2 |
Geneformer tokenizer.
|
| 3 |
|
| 4 |
Usage:
|
| 5 |
+
from geneformer import TranscriptomeTokenizer
|
| 6 |
+
tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ_major"}, nproc=4)
|
| 7 |
tk.tokenize_data("loom_data_directory", "output_directory", "output_prefix")
|
| 8 |
"""
|
| 9 |
|
|
|
|
| 32 |
return sentence_tokens
|
| 33 |
|
| 34 |
|
| 35 |
+
class TranscriptomeTokenizer:
|
| 36 |
def __init__(
|
| 37 |
self,
|
| 38 |
custom_attr_name_dict,
|