Christina Theodoris
commited on
Commit
·
402ba9b
1
Parent(s):
b925dcc
Subclass collator for cell classification
Browse files
examples/cell_classification.ipynb
CHANGED
|
@@ -1890,6 +1890,7 @@
|
|
| 1890 |
" \"do_train\": True,\n",
|
| 1891 |
" \"do_eval\": True,\n",
|
| 1892 |
" \"evaluation_strategy\": \"epoch\",\n",
|
|
|
|
| 1893 |
" \"logging_steps\": logging_steps,\n",
|
| 1894 |
" \"group_by_length\": True,\n",
|
| 1895 |
" \"length_column_name\": \"length\",\n",
|
|
@@ -1927,7 +1928,7 @@
|
|
| 1927 |
],
|
| 1928 |
"metadata": {
|
| 1929 |
"kernelspec": {
|
| 1930 |
-
"display_name": "Python 3
|
| 1931 |
"language": "python",
|
| 1932 |
"name": "python3"
|
| 1933 |
},
|
|
@@ -1941,7 +1942,7 @@
|
|
| 1941 |
"name": "python",
|
| 1942 |
"nbconvert_exporter": "python",
|
| 1943 |
"pygments_lexer": "ipython3",
|
| 1944 |
-
"version": "3.
|
| 1945 |
},
|
| 1946 |
"vscode": {
|
| 1947 |
"interpreter": {
|
|
|
|
| 1890 |
" \"do_train\": True,\n",
|
| 1891 |
" \"do_eval\": True,\n",
|
| 1892 |
" \"evaluation_strategy\": \"epoch\",\n",
|
| 1893 |
+
" \"save_strategy\": \"epoch\",\n",
|
| 1894 |
" \"logging_steps\": logging_steps,\n",
|
| 1895 |
" \"group_by_length\": True,\n",
|
| 1896 |
" \"length_column_name\": \"length\",\n",
|
|
|
|
| 1928 |
],
|
| 1929 |
"metadata": {
|
| 1930 |
"kernelspec": {
|
| 1931 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1932 |
"language": "python",
|
| 1933 |
"name": "python3"
|
| 1934 |
},
|
|
|
|
| 1942 |
"name": "python",
|
| 1943 |
"nbconvert_exporter": "python",
|
| 1944 |
"pygments_lexer": "ipython3",
|
| 1945 |
+
"version": "3.10.11"
|
| 1946 |
},
|
| 1947 |
"vscode": {
|
| 1948 |
"interpreter": {
|
examples/gene_classification.ipynb
CHANGED
|
@@ -2,7 +2,6 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
| 5 |
-
"id": "234afff3",
|
| 6 |
"metadata": {},
|
| 7 |
"source": [
|
| 8 |
"## Geneformer Fine-Tuning for Classification of Dosage-Sensitive vs. -Insensitive Transcription Factors (TFs)"
|
|
@@ -448,7 +447,6 @@
|
|
| 448 |
{
|
| 449 |
"cell_type": "code",
|
| 450 |
"execution_count": null,
|
| 451 |
-
"id": "d24e1ab7-0131-44bd-b458-1ce5ba31853e",
|
| 452 |
"metadata": {},
|
| 453 |
"outputs": [],
|
| 454 |
"source": [
|
|
@@ -2385,7 +2383,7 @@
|
|
| 2385 |
],
|
| 2386 |
"metadata": {
|
| 2387 |
"kernelspec": {
|
| 2388 |
-
"display_name": "Python 3
|
| 2389 |
"language": "python",
|
| 2390 |
"name": "python3"
|
| 2391 |
},
|
|
@@ -2399,7 +2397,7 @@
|
|
| 2399 |
"name": "python",
|
| 2400 |
"nbconvert_exporter": "python",
|
| 2401 |
"pygments_lexer": "ipython3",
|
| 2402 |
-
"version": "3.
|
| 2403 |
},
|
| 2404 |
"vscode": {
|
| 2405 |
"interpreter": {
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "markdown",
|
|
|
|
| 5 |
"metadata": {},
|
| 6 |
"source": [
|
| 7 |
"## Geneformer Fine-Tuning for Classification of Dosage-Sensitive vs. -Insensitive Transcription Factors (TFs)"
|
|
|
|
| 447 |
{
|
| 448 |
"cell_type": "code",
|
| 449 |
"execution_count": null,
|
|
|
|
| 450 |
"metadata": {},
|
| 451 |
"outputs": [],
|
| 452 |
"source": [
|
|
|
|
| 2383 |
],
|
| 2384 |
"metadata": {
|
| 2385 |
"kernelspec": {
|
| 2386 |
+
"display_name": "Python 3 (ipykernel)",
|
| 2387 |
"language": "python",
|
| 2388 |
"name": "python3"
|
| 2389 |
},
|
|
|
|
| 2397 |
"name": "python",
|
| 2398 |
"nbconvert_exporter": "python",
|
| 2399 |
"pygments_lexer": "ipython3",
|
| 2400 |
+
"version": "3.10.11"
|
| 2401 |
},
|
| 2402 |
"vscode": {
|
| 2403 |
"interpreter": {
|
geneformer/__init__.py
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
from . import tokenizer
|
| 2 |
from . import pretrainer
|
| 3 |
-
from . import
|
| 4 |
-
from . import collator_for_gene_classification
|
| 5 |
from . import in_silico_perturber
|
| 6 |
from . import in_silico_perturber_stats
|
| 7 |
from .tokenizer import TranscriptomeTokenizer
|
| 8 |
from .pretrainer import GeneformerPretrainer
|
| 9 |
-
from .
|
| 10 |
-
from .
|
| 11 |
from .in_silico_perturber import InSilicoPerturber
|
| 12 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
|
|
|
| 1 |
from . import tokenizer
|
| 2 |
from . import pretrainer
|
| 3 |
+
from . import collator_for_classification
|
|
|
|
| 4 |
from . import in_silico_perturber
|
| 5 |
from . import in_silico_perturber_stats
|
| 6 |
from .tokenizer import TranscriptomeTokenizer
|
| 7 |
from .pretrainer import GeneformerPretrainer
|
| 8 |
+
from .collator_for_classification import DataCollatorForGeneClassification
|
| 9 |
+
from .collator_for_classification import DataCollatorForCellClassification
|
| 10 |
from .in_silico_perturber import InSilicoPerturber
|
| 11 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
geneformer/{collator_for_cell_classification.py → collator_for_classification.py}
RENAMED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
-
Geneformer collator for cell classification.
|
| 3 |
|
| 4 |
-
Huggingface data collator modified to accommodate single-cell transcriptomics data for cell classification.
|
| 5 |
"""
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
@@ -30,18 +30,6 @@ LARGE_INTEGER = int(
|
|
| 30 |
|
| 31 |
# precollator functions
|
| 32 |
|
| 33 |
-
def run_once(f):
|
| 34 |
-
def wrapper(*args, **kwargs):
|
| 35 |
-
if not wrapper.has_run:
|
| 36 |
-
wrapper.has_run = True
|
| 37 |
-
return f(*args, **kwargs)
|
| 38 |
-
wrapper.has_run = False
|
| 39 |
-
return wrapper
|
| 40 |
-
|
| 41 |
-
@run_once
|
| 42 |
-
def check_output_once(output):
|
| 43 |
-
return print(output)
|
| 44 |
-
|
| 45 |
class ExplicitEnum(Enum):
|
| 46 |
"""
|
| 47 |
Enum with more explicit error message for missing values.
|
|
@@ -91,7 +79,7 @@ class TensorType(ExplicitEnum):
|
|
| 91 |
JAX = "jax"
|
| 92 |
|
| 93 |
|
| 94 |
-
class
|
| 95 |
mask_token = "<mask>"
|
| 96 |
mask_token_id = token_dictionary.get("<mask>")
|
| 97 |
pad_token = "<pad>"
|
|
@@ -240,6 +228,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 240 |
Dict[str, List[EncodedInput]],
|
| 241 |
List[Dict[str, EncodedInput]],
|
| 242 |
],
|
|
|
|
| 243 |
padding: Union[bool, str, PaddingStrategy] = True,
|
| 244 |
max_length: Optional[int] = None,
|
| 245 |
pad_to_multiple_of: Optional[int] = None,
|
|
@@ -357,6 +346,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 357 |
if required_input and not isinstance(required_input[0], (list, tuple)):
|
| 358 |
encoded_inputs = self._pad(
|
| 359 |
encoded_inputs,
|
|
|
|
| 360 |
max_length=max_length,
|
| 361 |
padding_strategy=padding_strategy,
|
| 362 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
@@ -378,6 +368,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 378 |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
| 379 |
outputs = self._pad(
|
| 380 |
inputs,
|
|
|
|
| 381 |
max_length=max_length,
|
| 382 |
padding_strategy=padding_strategy,
|
| 383 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
@@ -388,12 +379,14 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 388 |
if key not in batch_outputs:
|
| 389 |
batch_outputs[key] = []
|
| 390 |
batch_outputs[key].append(value)
|
| 391 |
-
|
|
|
|
| 392 |
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
| 393 |
|
| 394 |
def _pad(
|
| 395 |
self,
|
| 396 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
|
|
|
| 397 |
max_length: Optional[int] = None,
|
| 398 |
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
| 399 |
pad_to_multiple_of: Optional[int] = None,
|
|
@@ -446,6 +439,8 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 446 |
if "special_tokens_mask" in encoded_inputs:
|
| 447 |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
| 448 |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
|
|
|
|
|
|
| 449 |
elif self.padding_side == "left":
|
| 450 |
if return_attention_mask:
|
| 451 |
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
|
@@ -456,13 +451,13 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 456 |
if "special_tokens_mask" in encoded_inputs:
|
| 457 |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
| 458 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
|
|
|
|
|
|
| 459 |
else:
|
| 460 |
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
| 461 |
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
| 462 |
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
| 463 |
|
| 464 |
-
# check_output_once(encoded_inputs)
|
| 465 |
-
|
| 466 |
return encoded_inputs
|
| 467 |
|
| 468 |
def get_special_tokens_mask(
|
|
@@ -526,7 +521,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
| 526 |
|
| 527 |
# collator functions
|
| 528 |
|
| 529 |
-
class
|
| 530 |
"""
|
| 531 |
Data collator that will dynamically pad the inputs received, as well as the labels.
|
| 532 |
Args:
|
|
@@ -551,22 +546,49 @@ class DataCollatorForCellClassification(DataCollatorForTokenClassification):
|
|
| 551 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
| 552 |
"""
|
| 553 |
|
| 554 |
-
tokenizer
|
|
|
|
| 555 |
padding: Union[bool, str, PaddingStrategy] = True
|
| 556 |
max_length: Optional[int] = None
|
| 557 |
pad_to_multiple_of: Optional[int] = None
|
| 558 |
label_pad_token_id: int = -100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 559 |
|
| 560 |
-
def
|
| 561 |
label_name = "label" if "label" in features[0].keys() else "labels"
|
| 562 |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
| 563 |
batch = self.tokenizer.pad(
|
| 564 |
features,
|
|
|
|
| 565 |
padding=self.padding,
|
| 566 |
max_length=self.max_length,
|
| 567 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 568 |
return_tensors="pt",
|
| 569 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
|
| 571 |
# Special handling for labels.
|
| 572 |
# Ensure that tensor is created with the correct type
|
|
@@ -576,6 +598,5 @@ class DataCollatorForCellClassification(DataCollatorForTokenClassification):
|
|
| 576 |
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
| 577 |
dtype = torch.long if isinstance(label, int) else torch.float
|
| 578 |
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
| 579 |
-
|
| 580 |
-
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
| 581 |
return batch
|
|
|
|
| 1 |
"""
|
| 2 |
+
Geneformer collator for gene and cell classification.
|
| 3 |
|
| 4 |
+
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene and cell classification.
|
| 5 |
"""
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
|
|
| 30 |
|
| 31 |
# precollator functions
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
class ExplicitEnum(Enum):
|
| 34 |
"""
|
| 35 |
Enum with more explicit error message for missing values.
|
|
|
|
| 79 |
JAX = "jax"
|
| 80 |
|
| 81 |
|
| 82 |
+
class PrecollatorForGeneAndCellClassification(SpecialTokensMixin):
|
| 83 |
mask_token = "<mask>"
|
| 84 |
mask_token_id = token_dictionary.get("<mask>")
|
| 85 |
pad_token = "<pad>"
|
|
|
|
| 228 |
Dict[str, List[EncodedInput]],
|
| 229 |
List[Dict[str, EncodedInput]],
|
| 230 |
],
|
| 231 |
+
class_type, # options: "gene" or "cell"
|
| 232 |
padding: Union[bool, str, PaddingStrategy] = True,
|
| 233 |
max_length: Optional[int] = None,
|
| 234 |
pad_to_multiple_of: Optional[int] = None,
|
|
|
|
| 346 |
if required_input and not isinstance(required_input[0], (list, tuple)):
|
| 347 |
encoded_inputs = self._pad(
|
| 348 |
encoded_inputs,
|
| 349 |
+
class_type=class_type,
|
| 350 |
max_length=max_length,
|
| 351 |
padding_strategy=padding_strategy,
|
| 352 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
|
|
| 368 |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
| 369 |
outputs = self._pad(
|
| 370 |
inputs,
|
| 371 |
+
class_type=class_type,
|
| 372 |
max_length=max_length,
|
| 373 |
padding_strategy=padding_strategy,
|
| 374 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
|
|
| 379 |
if key not in batch_outputs:
|
| 380 |
batch_outputs[key] = []
|
| 381 |
batch_outputs[key].append(value)
|
| 382 |
+
if class_type == "cell":
|
| 383 |
+
del batch_outputs["label"]
|
| 384 |
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
| 385 |
|
| 386 |
def _pad(
|
| 387 |
self,
|
| 388 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 389 |
+
class_type, # options: "gene" or "cell"
|
| 390 |
max_length: Optional[int] = None,
|
| 391 |
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
| 392 |
pad_to_multiple_of: Optional[int] = None,
|
|
|
|
| 439 |
if "special_tokens_mask" in encoded_inputs:
|
| 440 |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
| 441 |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
| 442 |
+
if class_type == "gene":
|
| 443 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference
|
| 444 |
elif self.padding_side == "left":
|
| 445 |
if return_attention_mask:
|
| 446 |
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
|
|
|
| 451 |
if "special_tokens_mask" in encoded_inputs:
|
| 452 |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
| 453 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
| 454 |
+
if class_type == "gene":
|
| 455 |
+
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"]
|
| 456 |
else:
|
| 457 |
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
| 458 |
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
| 459 |
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
| 460 |
|
|
|
|
|
|
|
| 461 |
return encoded_inputs
|
| 462 |
|
| 463 |
def get_special_tokens_mask(
|
|
|
|
| 521 |
|
| 522 |
# collator functions
|
| 523 |
|
| 524 |
+
class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
| 525 |
"""
|
| 526 |
Data collator that will dynamically pad the inputs received, as well as the labels.
|
| 527 |
Args:
|
|
|
|
| 546 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
| 547 |
"""
|
| 548 |
|
| 549 |
+
tokenizer = PrecollatorForGeneAndCellClassification()
|
| 550 |
+
class_type = "gene"
|
| 551 |
padding: Union[bool, str, PaddingStrategy] = True
|
| 552 |
max_length: Optional[int] = None
|
| 553 |
pad_to_multiple_of: Optional[int] = None
|
| 554 |
label_pad_token_id: int = -100
|
| 555 |
+
|
| 556 |
+
def __init__(self, *args, **kwargs) -> None:
|
| 557 |
+
super().__init__(
|
| 558 |
+
tokenizer=self.tokenizer,
|
| 559 |
+
padding=self.padding,
|
| 560 |
+
max_length=self.max_length,
|
| 561 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 562 |
+
label_pad_token_id=self.label_pad_token_id,
|
| 563 |
+
*args, **kwargs)
|
| 564 |
|
| 565 |
+
def _prepare_batch(self, features):
|
| 566 |
label_name = "label" if "label" in features[0].keys() else "labels"
|
| 567 |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
| 568 |
batch = self.tokenizer.pad(
|
| 569 |
features,
|
| 570 |
+
class_type=self.class_type,
|
| 571 |
padding=self.padding,
|
| 572 |
max_length=self.max_length,
|
| 573 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 574 |
return_tensors="pt",
|
| 575 |
)
|
| 576 |
+
return batch
|
| 577 |
+
|
| 578 |
+
def __call__(self, features):
|
| 579 |
+
batch = self._prepare_batch(features)
|
| 580 |
+
|
| 581 |
+
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
| 582 |
+
return batch
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
class DataCollatorForCellClassification(DataCollatorForGeneClassification):
|
| 586 |
+
|
| 587 |
+
class_type = "cell"
|
| 588 |
+
|
| 589 |
+
def _prepare_batch(self, features):
|
| 590 |
+
|
| 591 |
+
batch = super()._prepare_batch(features)
|
| 592 |
|
| 593 |
# Special handling for labels.
|
| 594 |
# Ensure that tensor is created with the correct type
|
|
|
|
| 598 |
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
| 599 |
dtype = torch.long if isinstance(label, int) else torch.float
|
| 600 |
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
| 601 |
+
|
|
|
|
| 602 |
return batch
|
geneformer/collator_for_gene_classification.py
DELETED
|
@@ -1,561 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Geneformer collator for gene classification.
|
| 3 |
-
|
| 4 |
-
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene classification.
|
| 5 |
-
"""
|
| 6 |
-
import numpy as np
|
| 7 |
-
import torch
|
| 8 |
-
import warnings
|
| 9 |
-
from enum import Enum
|
| 10 |
-
from typing import Dict, List, Optional, Union
|
| 11 |
-
|
| 12 |
-
from transformers import (
|
| 13 |
-
DataCollatorForTokenClassification,
|
| 14 |
-
SpecialTokensMixin,
|
| 15 |
-
BatchEncoding,
|
| 16 |
-
)
|
| 17 |
-
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
| 18 |
-
from transformers.utils.generic import _is_tensorflow, _is_torch
|
| 19 |
-
|
| 20 |
-
from .pretrainer import token_dictionary
|
| 21 |
-
|
| 22 |
-
EncodedInput = List[int]
|
| 23 |
-
logger = logging.get_logger(__name__)
|
| 24 |
-
VERY_LARGE_INTEGER = int(
|
| 25 |
-
1e30
|
| 26 |
-
) # This is used to set the max input length for a model with infinite size input
|
| 27 |
-
LARGE_INTEGER = int(
|
| 28 |
-
1e20
|
| 29 |
-
) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
|
| 30 |
-
|
| 31 |
-
# precollator functions
|
| 32 |
-
|
| 33 |
-
class ExplicitEnum(Enum):
|
| 34 |
-
"""
|
| 35 |
-
Enum with more explicit error message for missing values.
|
| 36 |
-
"""
|
| 37 |
-
|
| 38 |
-
@classmethod
|
| 39 |
-
def _missing_(cls, value):
|
| 40 |
-
raise ValueError(
|
| 41 |
-
"%r is not a valid %s, please select one of %s"
|
| 42 |
-
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
class TruncationStrategy(ExplicitEnum):
|
| 46 |
-
"""
|
| 47 |
-
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
| 48 |
-
tab-completion in an IDE.
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
-
ONLY_FIRST = "only_first"
|
| 52 |
-
ONLY_SECOND = "only_second"
|
| 53 |
-
LONGEST_FIRST = "longest_first"
|
| 54 |
-
DO_NOT_TRUNCATE = "do_not_truncate"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
class PaddingStrategy(ExplicitEnum):
|
| 59 |
-
"""
|
| 60 |
-
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
|
| 61 |
-
in an IDE.
|
| 62 |
-
"""
|
| 63 |
-
|
| 64 |
-
LONGEST = "longest"
|
| 65 |
-
MAX_LENGTH = "max_length"
|
| 66 |
-
DO_NOT_PAD = "do_not_pad"
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
class TensorType(ExplicitEnum):
|
| 71 |
-
"""
|
| 72 |
-
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
| 73 |
-
tab-completion in an IDE.
|
| 74 |
-
"""
|
| 75 |
-
|
| 76 |
-
PYTORCH = "pt"
|
| 77 |
-
TENSORFLOW = "tf"
|
| 78 |
-
NUMPY = "np"
|
| 79 |
-
JAX = "jax"
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
class PrecollatorForGeneClassification(SpecialTokensMixin):
|
| 83 |
-
mask_token = "<mask>"
|
| 84 |
-
mask_token_id = token_dictionary.get("<mask>")
|
| 85 |
-
pad_token = "<pad>"
|
| 86 |
-
pad_token_id = token_dictionary.get("<pad>")
|
| 87 |
-
padding_side = "right"
|
| 88 |
-
all_special_ids = [
|
| 89 |
-
token_dictionary.get("<mask>"),
|
| 90 |
-
token_dictionary.get("<pad>")
|
| 91 |
-
]
|
| 92 |
-
model_input_names = ["input_ids"]
|
| 93 |
-
|
| 94 |
-
def _get_padding_truncation_strategies(
|
| 95 |
-
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
| 96 |
-
):
|
| 97 |
-
"""
|
| 98 |
-
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
| 99 |
-
and pad_to_max_length) and behaviors.
|
| 100 |
-
"""
|
| 101 |
-
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
| 102 |
-
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
| 103 |
-
|
| 104 |
-
# Backward compatibility for previous behavior, maybe we should deprecate it:
|
| 105 |
-
# If you only set max_length, it activates truncation for max_length
|
| 106 |
-
if max_length is not None and padding is False and truncation is False:
|
| 107 |
-
if verbose:
|
| 108 |
-
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
|
| 109 |
-
logger.warning(
|
| 110 |
-
"Truncation was not explicitly activated but `max_length` is provided a specific value, "
|
| 111 |
-
"please use `truncation=True` to explicitly truncate examples to max length. "
|
| 112 |
-
"Defaulting to 'longest_first' truncation strategy. "
|
| 113 |
-
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy "
|
| 114 |
-
"more precisely by providing a specific strategy to `truncation`."
|
| 115 |
-
)
|
| 116 |
-
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
| 117 |
-
truncation = "longest_first"
|
| 118 |
-
|
| 119 |
-
# Get padding strategy
|
| 120 |
-
if padding is False and old_pad_to_max_length:
|
| 121 |
-
if verbose:
|
| 122 |
-
warnings.warn(
|
| 123 |
-
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
| 124 |
-
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
| 125 |
-
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
| 126 |
-
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
| 127 |
-
"maximal input size of the model (e.g. 512 for Bert).",
|
| 128 |
-
FutureWarning,
|
| 129 |
-
)
|
| 130 |
-
if max_length is None:
|
| 131 |
-
padding_strategy = PaddingStrategy.LONGEST
|
| 132 |
-
else:
|
| 133 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
| 134 |
-
elif padding is not False:
|
| 135 |
-
if padding is True:
|
| 136 |
-
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
| 137 |
-
elif not isinstance(padding, PaddingStrategy):
|
| 138 |
-
padding_strategy = PaddingStrategy(padding)
|
| 139 |
-
elif isinstance(padding, PaddingStrategy):
|
| 140 |
-
padding_strategy = padding
|
| 141 |
-
else:
|
| 142 |
-
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
| 143 |
-
|
| 144 |
-
# Get truncation strategy
|
| 145 |
-
if truncation is False and old_truncation_strategy != "do_not_truncate":
|
| 146 |
-
if verbose:
|
| 147 |
-
warnings.warn(
|
| 148 |
-
"The `truncation_strategy` argument is deprecated and will be removed in a future version, "
|
| 149 |
-
"use `truncation=True` to truncate examples to a max length. You can give a specific "
|
| 150 |
-
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the "
|
| 151 |
-
"maximal input size of the model (e.g. 512 for Bert). "
|
| 152 |
-
" If you have pairs of inputs, you can give a specific truncation strategy selected among "
|
| 153 |
-
"`truncation='only_first'` (will only truncate the first sentence in the pairs) "
|
| 154 |
-
"`truncation='only_second'` (will only truncate the second sentence in the pairs) "
|
| 155 |
-
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).",
|
| 156 |
-
FutureWarning,
|
| 157 |
-
)
|
| 158 |
-
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
| 159 |
-
elif truncation is not False:
|
| 160 |
-
if truncation is True:
|
| 161 |
-
truncation_strategy = (
|
| 162 |
-
TruncationStrategy.LONGEST_FIRST
|
| 163 |
-
) # Default to truncate the longest sequences in pairs of inputs
|
| 164 |
-
elif not isinstance(truncation, TruncationStrategy):
|
| 165 |
-
truncation_strategy = TruncationStrategy(truncation)
|
| 166 |
-
elif isinstance(truncation, TruncationStrategy):
|
| 167 |
-
truncation_strategy = truncation
|
| 168 |
-
else:
|
| 169 |
-
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
| 170 |
-
|
| 171 |
-
# Set max length if needed
|
| 172 |
-
if max_length is None:
|
| 173 |
-
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
| 174 |
-
if self.model_max_length > LARGE_INTEGER:
|
| 175 |
-
if verbose:
|
| 176 |
-
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
|
| 177 |
-
logger.warning(
|
| 178 |
-
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
| 179 |
-
"Default to no padding."
|
| 180 |
-
)
|
| 181 |
-
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
| 182 |
-
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
| 183 |
-
else:
|
| 184 |
-
max_length = self.model_max_length
|
| 185 |
-
|
| 186 |
-
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
| 187 |
-
if self.model_max_length > LARGE_INTEGER:
|
| 188 |
-
if verbose:
|
| 189 |
-
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
|
| 190 |
-
logger.warning(
|
| 191 |
-
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
| 192 |
-
"Default to no truncation."
|
| 193 |
-
)
|
| 194 |
-
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
|
| 195 |
-
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
| 196 |
-
else:
|
| 197 |
-
max_length = self.model_max_length
|
| 198 |
-
|
| 199 |
-
# Test if we have a padding token
|
| 200 |
-
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
|
| 201 |
-
raise ValueError(
|
| 202 |
-
"Asking to pad but the tokenizer does not have a padding token. "
|
| 203 |
-
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
| 204 |
-
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
|
| 208 |
-
if (
|
| 209 |
-
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
| 210 |
-
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
| 211 |
-
and pad_to_multiple_of is not None
|
| 212 |
-
and max_length is not None
|
| 213 |
-
and (max_length % pad_to_multiple_of != 0)
|
| 214 |
-
):
|
| 215 |
-
raise ValueError(
|
| 216 |
-
f"Truncation and padding are both activated but "
|
| 217 |
-
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
return padding_strategy, truncation_strategy, max_length, kwargs
|
| 221 |
-
|
| 222 |
-
def pad(
|
| 223 |
-
self,
|
| 224 |
-
encoded_inputs: Union[
|
| 225 |
-
BatchEncoding,
|
| 226 |
-
List[BatchEncoding],
|
| 227 |
-
Dict[str, EncodedInput],
|
| 228 |
-
Dict[str, List[EncodedInput]],
|
| 229 |
-
List[Dict[str, EncodedInput]],
|
| 230 |
-
],
|
| 231 |
-
padding: Union[bool, str, PaddingStrategy] = True,
|
| 232 |
-
max_length: Optional[int] = None,
|
| 233 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 234 |
-
return_attention_mask: Optional[bool] = True,
|
| 235 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 236 |
-
verbose: bool = True,
|
| 237 |
-
) -> BatchEncoding:
|
| 238 |
-
"""
|
| 239 |
-
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
| 240 |
-
in the batch.
|
| 241 |
-
|
| 242 |
-
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
| 243 |
-
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
| 244 |
-
|
| 245 |
-
.. note::
|
| 246 |
-
|
| 247 |
-
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
| 248 |
-
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
| 249 |
-
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
| 250 |
-
|
| 251 |
-
Args:
|
| 252 |
-
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
| 253 |
-
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
| 254 |
-
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
| 255 |
-
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
| 256 |
-
well as in a PyTorch Dataloader collate function.
|
| 257 |
-
|
| 258 |
-
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
| 259 |
-
see the note above for the return type.
|
| 260 |
-
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 261 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 262 |
-
index) among:
|
| 263 |
-
|
| 264 |
-
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
| 265 |
-
single sequence if provided).
|
| 266 |
-
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 267 |
-
maximum acceptable input length for the model if that argument is not provided.
|
| 268 |
-
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 269 |
-
different lengths).
|
| 270 |
-
max_length (:obj:`int`, `optional`):
|
| 271 |
-
Maximum length of the returned list and optionally padding length (see above).
|
| 272 |
-
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 273 |
-
If set will pad the sequence to a multiple of the provided value.
|
| 274 |
-
|
| 275 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
| 276 |
-
>= 7.5 (Volta).
|
| 277 |
-
return_attention_mask (:obj:`bool`, `optional`):
|
| 278 |
-
Whether to return the attention mask. If left to the default, will return the attention mask according
|
| 279 |
-
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
| 280 |
-
|
| 281 |
-
`What are attention masks? <../glossary.html#attention-mask>`__
|
| 282 |
-
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`):
|
| 283 |
-
If set, will return tensors instead of list of python integers. Acceptable values are:
|
| 284 |
-
|
| 285 |
-
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
| 286 |
-
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
| 287 |
-
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
| 288 |
-
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
| 289 |
-
Whether or not to print more information and warnings.
|
| 290 |
-
"""
|
| 291 |
-
# If we have a list of dicts, let's convert it in a dict of lists
|
| 292 |
-
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
| 293 |
-
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
| 294 |
-
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
| 295 |
-
|
| 296 |
-
# The model's main input name, usually `input_ids`, has be passed for padding
|
| 297 |
-
if self.model_input_names[0] not in encoded_inputs:
|
| 298 |
-
raise ValueError(
|
| 299 |
-
"You should supply an encoding or a list of encodings to this method"
|
| 300 |
-
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
| 301 |
-
)
|
| 302 |
-
|
| 303 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
| 304 |
-
|
| 305 |
-
if not required_input:
|
| 306 |
-
if return_attention_mask:
|
| 307 |
-
encoded_inputs["attention_mask"] = []
|
| 308 |
-
return encoded_inputs
|
| 309 |
-
|
| 310 |
-
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
| 311 |
-
# and rebuild them afterwards if no return_tensors is specified
|
| 312 |
-
# Note that we lose the specific device the tensor may be on for PyTorch
|
| 313 |
-
|
| 314 |
-
first_element = required_input[0]
|
| 315 |
-
if isinstance(first_element, (list, tuple)):
|
| 316 |
-
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
| 317 |
-
index = 0
|
| 318 |
-
while len(required_input[index]) == 0:
|
| 319 |
-
index += 1
|
| 320 |
-
if index < len(required_input):
|
| 321 |
-
first_element = required_input[index][0]
|
| 322 |
-
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
| 323 |
-
if not isinstance(first_element, (int, list, tuple)):
|
| 324 |
-
if is_tf_available() and _is_tensorflow(first_element):
|
| 325 |
-
return_tensors = "tf" if return_tensors is None else return_tensors
|
| 326 |
-
elif is_torch_available() and _is_torch(first_element):
|
| 327 |
-
return_tensors = "pt" if return_tensors is None else return_tensors
|
| 328 |
-
elif isinstance(first_element, np.ndarray):
|
| 329 |
-
return_tensors = "np" if return_tensors is None else return_tensors
|
| 330 |
-
else:
|
| 331 |
-
raise ValueError(
|
| 332 |
-
f"type of {first_element} unknown: {type(first_element)}. "
|
| 333 |
-
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
for key, value in encoded_inputs.items():
|
| 337 |
-
encoded_inputs[key] = to_py_obj(value)
|
| 338 |
-
|
| 339 |
-
# Convert padding_strategy in PaddingStrategy
|
| 340 |
-
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
| 341 |
-
padding=padding, max_length=max_length, verbose=verbose
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
| 345 |
-
if required_input and not isinstance(required_input[0], (list, tuple)):
|
| 346 |
-
encoded_inputs = self._pad(
|
| 347 |
-
encoded_inputs,
|
| 348 |
-
max_length=max_length,
|
| 349 |
-
padding_strategy=padding_strategy,
|
| 350 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 351 |
-
return_attention_mask=return_attention_mask,
|
| 352 |
-
)
|
| 353 |
-
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
| 354 |
-
|
| 355 |
-
batch_size = len(required_input)
|
| 356 |
-
assert all(
|
| 357 |
-
len(v) == batch_size for v in encoded_inputs.values()
|
| 358 |
-
), "Some items in the output dictionary have a different batch size than others."
|
| 359 |
-
|
| 360 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
| 361 |
-
max_length = max(len(inputs) for inputs in required_input)
|
| 362 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
| 363 |
-
|
| 364 |
-
batch_outputs = {}
|
| 365 |
-
for i in range(batch_size):
|
| 366 |
-
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
| 367 |
-
outputs = self._pad(
|
| 368 |
-
inputs,
|
| 369 |
-
max_length=max_length,
|
| 370 |
-
padding_strategy=padding_strategy,
|
| 371 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 372 |
-
return_attention_mask=return_attention_mask,
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
for key, value in outputs.items():
|
| 376 |
-
if key not in batch_outputs:
|
| 377 |
-
batch_outputs[key] = []
|
| 378 |
-
batch_outputs[key].append(value)
|
| 379 |
-
|
| 380 |
-
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
| 381 |
-
|
| 382 |
-
def _pad(
|
| 383 |
-
self,
|
| 384 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 385 |
-
max_length: Optional[int] = None,
|
| 386 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
| 387 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 388 |
-
return_attention_mask: Optional[bool] = True,
|
| 389 |
-
) -> dict:
|
| 390 |
-
"""
|
| 391 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
| 392 |
-
|
| 393 |
-
Args:
|
| 394 |
-
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
| 395 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
| 396 |
-
Will truncate by taking into account the special tokens.
|
| 397 |
-
padding_strategy: PaddingStrategy to use for padding.
|
| 398 |
-
|
| 399 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
| 400 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
| 401 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
| 402 |
-
The tokenizer padding sides are defined in self.padding_side:
|
| 403 |
-
|
| 404 |
-
- 'left': pads on the left of the sequences
|
| 405 |
-
- 'right': pads on the right of the sequences
|
| 406 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
| 407 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
| 408 |
-
>= 7.5 (Volta).
|
| 409 |
-
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
| 410 |
-
"""
|
| 411 |
-
# Load from model defaults
|
| 412 |
-
if return_attention_mask is None:
|
| 413 |
-
return_attention_mask = "attention_mask" in self.model_input_names
|
| 414 |
-
|
| 415 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
| 416 |
-
|
| 417 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
| 418 |
-
max_length = len(required_input)
|
| 419 |
-
|
| 420 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
| 421 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
| 422 |
-
|
| 423 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
| 424 |
-
|
| 425 |
-
if needs_to_be_padded:
|
| 426 |
-
difference = max_length - len(required_input)
|
| 427 |
-
if self.padding_side == "right":
|
| 428 |
-
if return_attention_mask:
|
| 429 |
-
encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
| 430 |
-
if "token_type_ids" in encoded_inputs:
|
| 431 |
-
encoded_inputs["token_type_ids"] = (
|
| 432 |
-
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
| 433 |
-
)
|
| 434 |
-
if "special_tokens_mask" in encoded_inputs:
|
| 435 |
-
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
| 436 |
-
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
| 437 |
-
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference
|
| 438 |
-
elif self.padding_side == "left":
|
| 439 |
-
if return_attention_mask:
|
| 440 |
-
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
| 441 |
-
if "token_type_ids" in encoded_inputs:
|
| 442 |
-
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
| 443 |
-
"token_type_ids"
|
| 444 |
-
]
|
| 445 |
-
if "special_tokens_mask" in encoded_inputs:
|
| 446 |
-
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
| 447 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
| 448 |
-
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"]
|
| 449 |
-
else:
|
| 450 |
-
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
| 451 |
-
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
| 452 |
-
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
| 453 |
-
|
| 454 |
-
# check_output_once(encoded_inputs)
|
| 455 |
-
|
| 456 |
-
return encoded_inputs
|
| 457 |
-
|
| 458 |
-
def get_special_tokens_mask(
|
| 459 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 460 |
-
) -> List[int]:
|
| 461 |
-
"""
|
| 462 |
-
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 463 |
-
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
| 464 |
-
Args:
|
| 465 |
-
token_ids_0 (:obj:`List[int]`):
|
| 466 |
-
List of ids of the first sequence.
|
| 467 |
-
token_ids_1 (:obj:`List[int]`, `optional`):
|
| 468 |
-
List of ids of the second sequence.
|
| 469 |
-
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
| 470 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
| 471 |
-
Returns:
|
| 472 |
-
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 473 |
-
"""
|
| 474 |
-
assert already_has_special_tokens and token_ids_1 is None, (
|
| 475 |
-
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
| 476 |
-
"Please use a slow (full python) tokenizer to activate this argument."
|
| 477 |
-
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
| 478 |
-
"to get the special tokens mask in any tokenizer. "
|
| 479 |
-
)
|
| 480 |
-
|
| 481 |
-
all_special_ids = self.all_special_ids # cache the property
|
| 482 |
-
|
| 483 |
-
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]
|
| 484 |
-
|
| 485 |
-
return special_tokens_mask
|
| 486 |
-
|
| 487 |
-
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
|
| 488 |
-
"""
|
| 489 |
-
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
| 490 |
-
vocabulary.
|
| 491 |
-
Args:
|
| 492 |
-
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
|
| 493 |
-
Returns:
|
| 494 |
-
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
|
| 495 |
-
"""
|
| 496 |
-
if tokens is None:
|
| 497 |
-
return None
|
| 498 |
-
|
| 499 |
-
if isinstance(tokens, str):
|
| 500 |
-
return self._convert_token_to_id_with_added_voc(tokens)
|
| 501 |
-
|
| 502 |
-
ids = []
|
| 503 |
-
for token in tokens:
|
| 504 |
-
ids.append(self._convert_token_to_id_with_added_voc(token))
|
| 505 |
-
return ids
|
| 506 |
-
|
| 507 |
-
def _convert_token_to_id_with_added_voc(self, token):
|
| 508 |
-
if token is None:
|
| 509 |
-
return None
|
| 510 |
-
|
| 511 |
-
return token_dictionary.get(token)
|
| 512 |
-
|
| 513 |
-
def __len__(self):
|
| 514 |
-
return len(token_dictionary)
|
| 515 |
-
|
| 516 |
-
# collator functions
|
| 517 |
-
|
| 518 |
-
class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
| 519 |
-
"""
|
| 520 |
-
Data collator that will dynamically pad the inputs received, as well as the labels.
|
| 521 |
-
Args:
|
| 522 |
-
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
| 523 |
-
The tokenizer used for encoding the data.
|
| 524 |
-
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
| 525 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
| 526 |
-
among:
|
| 527 |
-
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 528 |
-
sequence if provided).
|
| 529 |
-
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
| 530 |
-
maximum acceptable input length for the model if that argument is not provided.
|
| 531 |
-
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
| 532 |
-
different lengths).
|
| 533 |
-
max_length (:obj:`int`, `optional`):
|
| 534 |
-
Maximum length of the returned list and optionally padding length (see above).
|
| 535 |
-
pad_to_multiple_of (:obj:`int`, `optional`):
|
| 536 |
-
If set will pad the sequence to a multiple of the provided value.
|
| 537 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
| 538 |
-
7.5 (Volta).
|
| 539 |
-
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
| 540 |
-
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
| 541 |
-
"""
|
| 542 |
-
|
| 543 |
-
tokenizer: PrecollatorForGeneClassification()
|
| 544 |
-
padding: Union[bool, str, PaddingStrategy] = True
|
| 545 |
-
max_length: Optional[int] = None
|
| 546 |
-
pad_to_multiple_of: Optional[int] = None
|
| 547 |
-
label_pad_token_id: int = -100
|
| 548 |
-
|
| 549 |
-
def __call__(self, features):
|
| 550 |
-
label_name = "label" if "label" in features[0].keys() else "labels"
|
| 551 |
-
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
| 552 |
-
batch = self.tokenizer.pad(
|
| 553 |
-
features,
|
| 554 |
-
padding=self.padding,
|
| 555 |
-
max_length=self.max_length,
|
| 556 |
-
pad_to_multiple_of=self.pad_to_multiple_of,
|
| 557 |
-
return_tensors="pt",
|
| 558 |
-
)
|
| 559 |
-
|
| 560 |
-
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
| 561 |
-
return batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|