Raise error for train and validation mismatch (#459)
Browse files- Raise error for train and validation mismatch (83f83fdbee9d0e9c19e2f050181f8bcb7b1ac8b3)
Co-authored-by: Madhavan Venkatesh <[email protected]>
- geneformer/mtl/data.py +117 -105
geneformer/mtl/data.py
CHANGED
|
@@ -1,150 +1,162 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
from .collators import DataCollatorForMultitaskCellClassification
|
| 4 |
from .imports import *
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def load_and_preprocess_data(dataset_path, config, is_test=False, dataset_type=""):
|
|
|
|
| 8 |
try:
|
| 9 |
dataset = load_from_disk(dataset_path)
|
| 10 |
|
|
|
|
| 11 |
task_names = [f"task{i+1}" for i in range(len(config["task_columns"]))]
|
| 12 |
task_to_column = dict(zip(task_names, config["task_columns"]))
|
| 13 |
config["task_names"] = task_names
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
raise KeyError(
|
| 20 |
-
f"Column {column} not found in the dataset. Available columns: {list(available_columns)}"
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
label_mappings = {}
|
| 24 |
-
task_label_mappings = {}
|
| 25 |
-
cell_id_mapping = {}
|
| 26 |
-
num_labels_list = []
|
| 27 |
-
|
| 28 |
-
# Load or create task label mappings
|
| 29 |
-
if not is_test:
|
| 30 |
-
for task, column in task_to_column.items():
|
| 31 |
-
unique_values = sorted(set(dataset[column])) # Ensure consistency
|
| 32 |
-
label_mappings[column] = {
|
| 33 |
-
label: idx for idx, label in enumerate(unique_values)
|
| 34 |
-
}
|
| 35 |
-
task_label_mappings[task] = label_mappings[column]
|
| 36 |
-
num_labels_list.append(len(unique_values))
|
| 37 |
-
|
| 38 |
-
# Print the mappings for each task with dataset type prefix
|
| 39 |
-
for task, mapping in task_label_mappings.items():
|
| 40 |
-
print(
|
| 41 |
-
f"{dataset_type.capitalize()} mapping for {task}: {mapping}"
|
| 42 |
-
) # sanity check, for train/validation splits
|
| 43 |
-
|
| 44 |
-
# Save the task label mappings as a pickle file
|
| 45 |
-
with open(f"{config['results_dir']}/task_label_mappings.pkl", "wb") as f:
|
| 46 |
-
pickle.dump(task_label_mappings, f)
|
| 47 |
-
else:
|
| 48 |
-
# Load task label mappings from pickle file for test data
|
| 49 |
-
with open(f"{config['results_dir']}/task_label_mappings.pkl", "rb") as f:
|
| 50 |
-
task_label_mappings = pickle.load(f)
|
| 51 |
-
|
| 52 |
-
# Infer num_labels_list from task_label_mappings
|
| 53 |
-
for task, mapping in task_label_mappings.items():
|
| 54 |
-
num_labels_list.append(len(mapping))
|
| 55 |
-
|
| 56 |
-
# Store unique cell IDs in a separate dictionary
|
| 57 |
-
for idx, record in enumerate(dataset):
|
| 58 |
-
cell_id = record.get("unique_cell_id", idx)
|
| 59 |
-
cell_id_mapping[idx] = cell_id
|
| 60 |
-
|
| 61 |
-
# Transform records to the desired format
|
| 62 |
-
transformed_dataset = []
|
| 63 |
-
for idx, record in enumerate(dataset):
|
| 64 |
-
transformed_record = {}
|
| 65 |
-
transformed_record["input_ids"] = torch.tensor(
|
| 66 |
-
record["input_ids"], dtype=torch.long
|
| 67 |
-
)
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
transformed_record["label"] = label_dict
|
| 80 |
-
else:
|
| 81 |
-
# Create dummy labels for test data
|
| 82 |
-
label_dict = {task: -1 for task in config["task_names"]}
|
| 83 |
-
transformed_record["label"] = label_dict
|
| 84 |
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
return transformed_dataset, cell_id_mapping, num_labels_list
|
|
|
|
| 88 |
except KeyError as e:
|
| 89 |
-
|
| 90 |
except Exception as e:
|
| 91 |
-
|
| 92 |
-
return None, None, None
|
| 93 |
|
| 94 |
|
| 95 |
def preload_and_process_data(config):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
)
|
| 100 |
-
val_dataset, val_cell_id_mapping, _ = load_and_preprocess_data(
|
| 101 |
-
config["val_path"], config, dataset_type="validation"
|
| 102 |
-
)
|
| 103 |
-
return (
|
| 104 |
-
train_dataset,
|
| 105 |
-
train_cell_id_mapping,
|
| 106 |
-
val_dataset,
|
| 107 |
-
val_cell_id_mapping,
|
| 108 |
-
num_labels_list,
|
| 109 |
-
)
|
| 110 |
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
data_collator = DataCollatorForMultitaskCellClassification()
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
preprocessed_dataset,
|
| 119 |
batch_size=batch_size,
|
| 120 |
shuffle=True,
|
| 121 |
-
collate_fn=
|
| 122 |
-
num_workers=
|
| 123 |
pin_memory=True,
|
| 124 |
)
|
| 125 |
-
return loader
|
| 126 |
|
| 127 |
|
| 128 |
def preload_data(config):
|
| 129 |
-
|
| 130 |
-
train_loader = get_data_loader(
|
| 131 |
-
val_loader = get_data_loader(
|
| 132 |
return train_loader, val_loader
|
| 133 |
|
| 134 |
|
| 135 |
def load_and_preprocess_test_data(config):
|
| 136 |
-
"""
|
| 137 |
-
Load and preprocess test data, treating it as unlabeled.
|
| 138 |
-
"""
|
| 139 |
return load_and_preprocess_data(config["test_path"], config, is_test=True)
|
| 140 |
|
| 141 |
|
| 142 |
def prepare_test_loader(config):
|
| 143 |
-
"""
|
| 144 |
-
|
| 145 |
-
"""
|
| 146 |
-
test_dataset, cell_id_mapping, num_labels_list = load_and_preprocess_test_data(
|
| 147 |
-
config
|
| 148 |
-
)
|
| 149 |
test_loader = get_data_loader(test_dataset, config["batch_size"])
|
| 150 |
return test_loader, cell_id_mapping, num_labels_list
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
from .collators import DataCollatorForMultitaskCellClassification
|
| 3 |
from .imports import *
|
| 4 |
|
| 5 |
+
def validate_columns(dataset, required_columns, dataset_type):
|
| 6 |
+
"""Ensures required columns are present in the dataset."""
|
| 7 |
+
missing_columns = [col for col in required_columns if col not in dataset.column_names]
|
| 8 |
+
if missing_columns:
|
| 9 |
+
raise KeyError(
|
| 10 |
+
f"Missing columns in {dataset_type} dataset: {missing_columns}. "
|
| 11 |
+
f"Available columns: {dataset.column_names}"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def create_label_mappings(dataset, task_to_column):
|
| 16 |
+
"""Creates label mappings for the dataset."""
|
| 17 |
+
task_label_mappings = {}
|
| 18 |
+
num_labels_list = []
|
| 19 |
+
for task, column in task_to_column.items():
|
| 20 |
+
unique_values = sorted(set(dataset[column]))
|
| 21 |
+
mapping = {label: idx for idx, label in enumerate(unique_values)}
|
| 22 |
+
task_label_mappings[task] = mapping
|
| 23 |
+
num_labels_list.append(len(unique_values))
|
| 24 |
+
return task_label_mappings, num_labels_list
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def save_label_mappings(mappings, path):
|
| 28 |
+
"""Saves label mappings to a pickle file."""
|
| 29 |
+
with open(path, "wb") as f:
|
| 30 |
+
pickle.dump(mappings, f)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_label_mappings(path):
|
| 34 |
+
"""Loads label mappings from a pickle file."""
|
| 35 |
+
with open(path, "rb") as f:
|
| 36 |
+
return pickle.load(f)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def transform_dataset(dataset, task_to_column, task_label_mappings, config, is_test):
|
| 40 |
+
"""Transforms the dataset to the required format."""
|
| 41 |
+
transformed_dataset = []
|
| 42 |
+
cell_id_mapping = {}
|
| 43 |
+
|
| 44 |
+
for idx, record in enumerate(dataset):
|
| 45 |
+
transformed_record = {
|
| 46 |
+
"input_ids": torch.tensor(record["input_ids"], dtype=torch.long),
|
| 47 |
+
"cell_id": idx, # Index-based cell ID
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
if not is_test:
|
| 51 |
+
label_dict = {
|
| 52 |
+
task: task_label_mappings[task][record[column]]
|
| 53 |
+
for task, column in task_to_column.items()
|
| 54 |
+
}
|
| 55 |
+
else:
|
| 56 |
+
label_dict = {task: -1 for task in config["task_names"]}
|
| 57 |
+
|
| 58 |
+
transformed_record["label"] = label_dict
|
| 59 |
+
transformed_dataset.append(transformed_record)
|
| 60 |
+
cell_id_mapping[idx] = record.get("unique_cell_id", idx)
|
| 61 |
+
|
| 62 |
+
return transformed_dataset, cell_id_mapping
|
| 63 |
+
|
| 64 |
|
| 65 |
def load_and_preprocess_data(dataset_path, config, is_test=False, dataset_type=""):
|
| 66 |
+
"""Main function to load and preprocess data."""
|
| 67 |
try:
|
| 68 |
dataset = load_from_disk(dataset_path)
|
| 69 |
|
| 70 |
+
# Setup task and column mappings
|
| 71 |
task_names = [f"task{i+1}" for i in range(len(config["task_columns"]))]
|
| 72 |
task_to_column = dict(zip(task_names, config["task_columns"]))
|
| 73 |
config["task_names"] = task_names
|
| 74 |
|
| 75 |
+
label_mappings_path = os.path.join(
|
| 76 |
+
config["results_dir"],
|
| 77 |
+
f"task_label_mappings{'_val' if dataset_type == 'validation' else ''}.pkl"
|
| 78 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
if not is_test:
|
| 81 |
+
validate_columns(dataset, task_to_column.values(), dataset_type)
|
| 82 |
|
| 83 |
+
# Create and save label mappings
|
| 84 |
+
task_label_mappings, num_labels_list = create_label_mappings(dataset, task_to_column)
|
| 85 |
+
save_label_mappings(task_label_mappings, label_mappings_path)
|
| 86 |
+
else:
|
| 87 |
+
# Load existing mappings for test data
|
| 88 |
+
task_label_mappings = load_label_mappings(label_mappings_path)
|
| 89 |
+
num_labels_list = [len(mapping) for mapping in task_label_mappings.values()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# Transform dataset
|
| 92 |
+
transformed_dataset, cell_id_mapping = transform_dataset(
|
| 93 |
+
dataset, task_to_column, task_label_mappings, config, is_test
|
| 94 |
+
)
|
| 95 |
|
| 96 |
return transformed_dataset, cell_id_mapping, num_labels_list
|
| 97 |
+
|
| 98 |
except KeyError as e:
|
| 99 |
+
raise ValueError(f"Configuration error or dataset key missing: {e}")
|
| 100 |
except Exception as e:
|
| 101 |
+
raise RuntimeError(f"Error during data loading or preprocessing: {e}")
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
def preload_and_process_data(config):
|
| 105 |
+
"""Preloads and preprocesses train and validation datasets."""
|
| 106 |
+
# Process train data and save mappings
|
| 107 |
+
train_data = load_and_preprocess_data(config["train_path"], config, dataset_type="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Process validation data and save mappings
|
| 110 |
+
val_data = load_and_preprocess_data(config["val_path"], config, dataset_type="validation")
|
| 111 |
|
| 112 |
+
# Validate that the mappings match
|
| 113 |
+
validate_label_mappings(config)
|
| 114 |
+
|
| 115 |
+
return (*train_data, *val_data[:2]) # Return train and val data along with mappings
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def validate_label_mappings(config):
|
| 119 |
+
"""Ensures train and validation label mappings are consistent."""
|
| 120 |
+
train_mappings_path = os.path.join(config["results_dir"], "task_label_mappings.pkl")
|
| 121 |
+
val_mappings_path = os.path.join(config["results_dir"], "task_label_mappings_val.pkl")
|
| 122 |
+
train_mappings = load_label_mappings(train_mappings_path)
|
| 123 |
+
val_mappings = load_label_mappings(val_mappings_path)
|
| 124 |
+
|
| 125 |
+
for task_name in config["task_names"]:
|
| 126 |
+
if train_mappings[task_name] != val_mappings[task_name]:
|
| 127 |
+
raise ValueError(
|
| 128 |
+
f"Mismatch in label mappings for task '{task_name}'.\n"
|
| 129 |
+
f"Train Mapping: {train_mappings[task_name]}\n"
|
| 130 |
+
f"Validation Mapping: {val_mappings[task_name]}"
|
| 131 |
+
)
|
| 132 |
|
|
|
|
| 133 |
|
| 134 |
+
def get_data_loader(preprocessed_dataset, batch_size):
|
| 135 |
+
"""Creates a DataLoader with optimal settings."""
|
| 136 |
+
return DataLoader(
|
| 137 |
preprocessed_dataset,
|
| 138 |
batch_size=batch_size,
|
| 139 |
shuffle=True,
|
| 140 |
+
collate_fn=DataCollatorForMultitaskCellClassification(),
|
| 141 |
+
num_workers=os.cpu_count(),
|
| 142 |
pin_memory=True,
|
| 143 |
)
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
def preload_data(config):
|
| 147 |
+
"""Preprocesses train and validation data for trials."""
|
| 148 |
+
train_loader = get_data_loader(*preload_and_process_data(config)[:2], config["batch_size"])
|
| 149 |
+
val_loader = get_data_loader(*preload_and_process_data(config)[2:4], config["batch_size"])
|
| 150 |
return train_loader, val_loader
|
| 151 |
|
| 152 |
|
| 153 |
def load_and_preprocess_test_data(config):
|
| 154 |
+
"""Loads and preprocesses test data."""
|
|
|
|
|
|
|
| 155 |
return load_and_preprocess_data(config["test_path"], config, is_test=True)
|
| 156 |
|
| 157 |
|
| 158 |
def prepare_test_loader(config):
|
| 159 |
+
"""Prepares DataLoader for test data."""
|
| 160 |
+
test_dataset, cell_id_mapping, num_labels_list = load_and_preprocess_test_data(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
test_loader = get_data_loader(test_dataset, config["batch_size"])
|
| 162 |
return test_loader, cell_id_mapping, num_labels_list
|