Christina Theodoris
commited on
Commit
·
efec1c4
1
Parent(s):
09276dd
add in silico perturbation module
Browse files- geneformer/__init__.py +4 -0
- geneformer/in_silico_perturber.py +777 -0
- geneformer/in_silico_perturber_stats.py +302 -0
- geneformer/pretrainer.py +2 -1
geneformer/__init__.py
CHANGED
|
@@ -2,7 +2,11 @@ from . import tokenizer
|
|
| 2 |
from . import pretrainer
|
| 3 |
from . import collator_for_cell_classification
|
| 4 |
from . import collator_for_gene_classification
|
|
|
|
|
|
|
| 5 |
from .tokenizer import TranscriptomeTokenizer
|
| 6 |
from .pretrainer import GeneformerPretrainer
|
| 7 |
from .collator_for_gene_classification import DataCollatorForGeneClassification
|
| 8 |
from .collator_for_cell_classification import DataCollatorForCellClassification
|
|
|
|
|
|
|
|
|
| 2 |
from . import pretrainer
|
| 3 |
from . import collator_for_cell_classification
|
| 4 |
from . import collator_for_gene_classification
|
| 5 |
+
from . import in_silico_perturber
|
| 6 |
+
from . import in_silico_perturber_stats
|
| 7 |
from .tokenizer import TranscriptomeTokenizer
|
| 8 |
from .pretrainer import GeneformerPretrainer
|
| 9 |
from .collator_for_gene_classification import DataCollatorForGeneClassification
|
| 10 |
from .collator_for_cell_classification import DataCollatorForCellClassification
|
| 11 |
+
from .in_silico_perturber import InSilicoPerturber
|
| 12 |
+
from .in_silico_perturber_stats import InSilicoPerturberStats
|
geneformer/in_silico_perturber.py
ADDED
|
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Geneformer in silico perturber.
|
| 3 |
+
|
| 4 |
+
Usage:
|
| 5 |
+
from geneformer import InSilicoPerturber
|
| 6 |
+
isp = InSilicoPerturber(perturb_type="delete",
|
| 7 |
+
perturb_rank_shift=None,
|
| 8 |
+
genes_to_perturb="all",
|
| 9 |
+
combos=0,
|
| 10 |
+
anchor_gene=None,
|
| 11 |
+
model_type="Pretrained",
|
| 12 |
+
num_classes=0,
|
| 13 |
+
emb_mode="cell",
|
| 14 |
+
cell_emb_style="mean_pool",
|
| 15 |
+
filter_data={"cell_type":["cardiomyocyte"]},
|
| 16 |
+
cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])},
|
| 17 |
+
max_ncells=None,
|
| 18 |
+
emb_layer=-1,
|
| 19 |
+
forward_batch_size=100,
|
| 20 |
+
nproc=4,
|
| 21 |
+
save_raw_data=False)
|
| 22 |
+
isp.perturb_data("path/to/model",
|
| 23 |
+
"path/to/input_data",
|
| 24 |
+
"path/to/output_directory",
|
| 25 |
+
"output_prefix")
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
# imports
|
| 29 |
+
import itertools as it
|
| 30 |
+
import logging
|
| 31 |
+
import pickle
|
| 32 |
+
import seaborn as sns; sns.set()
|
| 33 |
+
import torch
|
| 34 |
+
from collections import defaultdict
|
| 35 |
+
from datasets import Dataset, load_from_disk
|
| 36 |
+
from tqdm.notebook import trange
|
| 37 |
+
from transformers import BertForMaskedLM, BertForTokenClassification, BertForSequenceClassification
|
| 38 |
+
|
| 39 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
| 40 |
+
|
| 41 |
+
logger = logging.getLogger(__name__)
|
| 42 |
+
|
| 43 |
+
def quant_layers(model):
|
| 44 |
+
layer_nums = []
|
| 45 |
+
for name, parameter in model.named_parameters():
|
| 46 |
+
if "layer" in name:
|
| 47 |
+
layer_nums += [name.split("layer.")[1].split(".")[0]]
|
| 48 |
+
return int(max(layer_nums))+1
|
| 49 |
+
|
| 50 |
+
def flatten_list(megalist):
|
| 51 |
+
return [item for sublist in megalist for item in sublist]
|
| 52 |
+
|
| 53 |
+
def forward_pass_single_cell(model, example_cell, layer_to_quant):
|
| 54 |
+
example_cell.set_format(type="torch")
|
| 55 |
+
input_data = example_cell["input_ids"]
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
outputs = model(
|
| 58 |
+
input_ids = input_data.to("cuda")
|
| 59 |
+
)
|
| 60 |
+
emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
| 61 |
+
del outputs
|
| 62 |
+
return emb
|
| 63 |
+
|
| 64 |
+
def perturb_emb_by_index(emb, indices):
|
| 65 |
+
mask = torch.ones(emb.numel(), dtype=torch.bool)
|
| 66 |
+
mask[indices] = False
|
| 67 |
+
return emb[mask]
|
| 68 |
+
|
| 69 |
+
def delete_index(example):
|
| 70 |
+
indexes = example["perturb_index"]
|
| 71 |
+
if len(indexes)>1:
|
| 72 |
+
indexes = flatten_list(indexes)
|
| 73 |
+
for index in sorted(indexes, reverse=True):
|
| 74 |
+
del example["input_ids"][index]
|
| 75 |
+
return example
|
| 76 |
+
|
| 77 |
+
def overexpress_index(example):
|
| 78 |
+
indexes = example["perturb_index"]
|
| 79 |
+
if len(indexes)>1:
|
| 80 |
+
indexes = flatten_list(indexes)
|
| 81 |
+
for index in sorted(indexes, reverse=True):
|
| 82 |
+
example["input_ids"].insert(0, example["input_ids"].pop(index))
|
| 83 |
+
return example
|
| 84 |
+
|
| 85 |
+
def make_perturbation_batch(example_cell,
|
| 86 |
+
perturb_type,
|
| 87 |
+
tokens_to_perturb,
|
| 88 |
+
anchor_token,
|
| 89 |
+
combo_lvl,
|
| 90 |
+
num_proc):
|
| 91 |
+
if tokens_to_perturb == "all":
|
| 92 |
+
if perturb_type in ["overexpress","activate"]:
|
| 93 |
+
range_start = 1
|
| 94 |
+
elif perturb_type in ["delete","inhibit"]:
|
| 95 |
+
range_start = 0
|
| 96 |
+
indices_to_perturb = [[i] for i in range(range_start,example_cell["length"][0])]
|
| 97 |
+
elif combo_lvl>0 and (anchor_token is not None):
|
| 98 |
+
example_input_ids = example_cell["input_ids "][0]
|
| 99 |
+
anchor_index = example_input_ids.index(anchor_token[0])
|
| 100 |
+
indices_to_perturb = [sorted([anchor_index,i]) if i!=anchor_index else None for i in range(example_cell["length"][0])]
|
| 101 |
+
indices_to_perturb = [item for item in indices_to_perturb if item is not None]
|
| 102 |
+
else:
|
| 103 |
+
example_input_ids = example_cell["input_ids"][0]
|
| 104 |
+
indices_to_perturb = [[example_input_ids.index(token)] if token in example_input_ids else None for token in tokens_to_perturb]
|
| 105 |
+
indices_to_perturb = [item for item in indices_to_perturb if item is not None]
|
| 106 |
+
|
| 107 |
+
# create all permutations of combo_lvl of modifiers from tokens_to_perturb
|
| 108 |
+
if combo_lvl>0 and (anchor_token is None):
|
| 109 |
+
if tokens_to_perturb != "all":
|
| 110 |
+
if len(tokens_to_perturb) == combo_lvl+1:
|
| 111 |
+
indices_to_perturb = [list(x) for x in it.combinations(indices_to_perturb, combo_lvl+1)]
|
| 112 |
+
else:
|
| 113 |
+
all_indices = [[i] for i in range(example_cell["length"][0])]
|
| 114 |
+
all_indices = [index for index in all_indices if index not in indices_to_perturb]
|
| 115 |
+
indices_to_perturb = [[[j for i in indices_to_perturb for j in i], x] for x in all_indices]
|
| 116 |
+
length = len(indices_to_perturb)
|
| 117 |
+
perturbation_dataset = Dataset.from_dict({"input_ids": example_cell["input_ids"]*length, "perturb_index": indices_to_perturb})
|
| 118 |
+
if length<400:
|
| 119 |
+
num_proc_i = 1
|
| 120 |
+
else:
|
| 121 |
+
num_proc_i = num_proc
|
| 122 |
+
if perturb_type == "delete":
|
| 123 |
+
perturbation_dataset = perturbation_dataset.map(delete_index, num_proc=num_proc_i)
|
| 124 |
+
elif perturb_type == "overexpress":
|
| 125 |
+
perturbation_dataset = perturbation_dataset.map(overexpress_index, num_proc=num_proc_i)
|
| 126 |
+
return perturbation_dataset, indices_to_perturb
|
| 127 |
+
|
| 128 |
+
# original cell emb removing the respective perturbed gene emb
|
| 129 |
+
def make_comparison_batch(original_emb, indices_to_perturb):
|
| 130 |
+
all_embs_list = []
|
| 131 |
+
for indices in indices_to_perturb:
|
| 132 |
+
emb_list = []
|
| 133 |
+
start = 0
|
| 134 |
+
if len(indices)>1 and isinstance(indices[0],list):
|
| 135 |
+
indices = flatten_list(indices)
|
| 136 |
+
for i in sorted(indices):
|
| 137 |
+
emb_list += [original_emb[start:i]]
|
| 138 |
+
start = i+1
|
| 139 |
+
emb_list += [original_emb[start:]]
|
| 140 |
+
all_embs_list += [torch.cat(emb_list)]
|
| 141 |
+
return torch.stack(all_embs_list)
|
| 142 |
+
|
| 143 |
+
# average embedding position of goal cell states
|
| 144 |
+
def get_cell_state_avg_embs(model,
|
| 145 |
+
filtered_input_data,
|
| 146 |
+
cell_states_to_model,
|
| 147 |
+
layer_to_quant,
|
| 148 |
+
token_dictionary,
|
| 149 |
+
forward_batch_size,
|
| 150 |
+
num_proc):
|
| 151 |
+
possible_states = [value[0]+value[1]+value[2] for value in cell_states_to_model.values()][0]
|
| 152 |
+
state_embs_dict = dict()
|
| 153 |
+
for possible_state in possible_states:
|
| 154 |
+
state_embs_list = []
|
| 155 |
+
|
| 156 |
+
def filter_states(example):
|
| 157 |
+
return example[list(cell_states_to_model.keys())[0]] in [possible_state]
|
| 158 |
+
filtered_input_data_state = filtered_input_data.filter(filter_states, num_proc=num_proc)
|
| 159 |
+
total_batch_length = len(filtered_input_data_state)
|
| 160 |
+
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
| 161 |
+
forward_batch_size = forward_batch_size-1
|
| 162 |
+
max_len = max(filtered_input_data_state["length"])
|
| 163 |
+
for i in range(0, total_batch_length, forward_batch_size):
|
| 164 |
+
max_range = min(i+forward_batch_size, total_batch_length)
|
| 165 |
+
|
| 166 |
+
state_minibatch = filtered_input_data_state.select([i for i in range(i, max_range)])
|
| 167 |
+
state_minibatch.set_format(type="torch")
|
| 168 |
+
|
| 169 |
+
input_data_minibatch = state_minibatch["input_ids"]
|
| 170 |
+
input_data_minibatch = pad_tensor_list(input_data_minibatch, max_len, token_dictionary)
|
| 171 |
+
|
| 172 |
+
with torch.no_grad():
|
| 173 |
+
outputs = model(
|
| 174 |
+
input_ids = input_data_minibatch.to("cuda")
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
state_embs_i = outputs.hidden_states[layer_to_quant]
|
| 178 |
+
state_embs_list += [state_embs_i]
|
| 179 |
+
del outputs
|
| 180 |
+
del state_minibatch
|
| 181 |
+
del input_data_minibatch
|
| 182 |
+
del state_embs_i
|
| 183 |
+
torch.cuda.empty_cache()
|
| 184 |
+
state_embs_stack = torch.cat(state_embs_list)
|
| 185 |
+
avg_state_emb = torch.mean(state_embs_stack,dim=[0,1],keepdim=True)
|
| 186 |
+
state_embs_dict[possible_state] = avg_state_emb
|
| 187 |
+
return state_embs_dict
|
| 188 |
+
|
| 189 |
+
# quantify cosine similarity of perturbed vs original or alternate states
|
| 190 |
+
def quant_cos_sims(model,
|
| 191 |
+
perturbation_batch,
|
| 192 |
+
forward_batch_size,
|
| 193 |
+
layer_to_quant,
|
| 194 |
+
original_emb,
|
| 195 |
+
indices_to_perturb,
|
| 196 |
+
cell_states_to_model,
|
| 197 |
+
state_embs_dict):
|
| 198 |
+
cos = torch.nn.CosineSimilarity(dim=2)
|
| 199 |
+
total_batch_length = len(perturbation_batch)
|
| 200 |
+
if ((total_batch_length-1)/forward_batch_size).is_integer():
|
| 201 |
+
forward_batch_size = forward_batch_size-1
|
| 202 |
+
if cell_states_to_model is None:
|
| 203 |
+
comparison_batch = make_comparison_batch(original_emb, indices_to_perturb)
|
| 204 |
+
cos_sims = []
|
| 205 |
+
else:
|
| 206 |
+
possible_states = [value[0]+value[1]+value[2] for value in cell_states_to_model.values()][0]
|
| 207 |
+
cos_sims_vs_alt_dict = dict(zip(possible_states,[[] for i in range(len(possible_states))]))
|
| 208 |
+
for i in range(0, total_batch_length, forward_batch_size):
|
| 209 |
+
max_range = min(i+forward_batch_size, total_batch_length)
|
| 210 |
+
|
| 211 |
+
perturbation_minibatch = perturbation_batch.select([i for i in range(i, max_range)])
|
| 212 |
+
perturbation_minibatch.set_format(type="torch")
|
| 213 |
+
|
| 214 |
+
input_data_minibatch = perturbation_minibatch["input_ids"]
|
| 215 |
+
|
| 216 |
+
with torch.no_grad():
|
| 217 |
+
outputs = model(
|
| 218 |
+
input_ids = input_data_minibatch.to("cuda")
|
| 219 |
+
)
|
| 220 |
+
del input_data_minibatch
|
| 221 |
+
del perturbation_minibatch
|
| 222 |
+
# cosine similarity between original emb and batch items
|
| 223 |
+
if len(indices_to_perturb)>1:
|
| 224 |
+
minibatch_emb = torch.squeeze(outputs.hidden_states[layer_to_quant])
|
| 225 |
+
else:
|
| 226 |
+
minibatch_emb = outputs.hidden_states[layer_to_quant]
|
| 227 |
+
if cell_states_to_model is None:
|
| 228 |
+
minibatch_comparison = comparison_batch[i:max_range]
|
| 229 |
+
cos_sims += [cos(minibatch_emb, minibatch_comparison).to("cpu")]
|
| 230 |
+
else:
|
| 231 |
+
for state in possible_states:
|
| 232 |
+
cos_sims_vs_alt_dict[state] += cos_sim_shift(original_emb, minibatch_emb, state_embs_dict[state])
|
| 233 |
+
del outputs
|
| 234 |
+
del minibatch_emb
|
| 235 |
+
if cell_states_to_model is None:
|
| 236 |
+
del minibatch_comparison
|
| 237 |
+
torch.cuda.empty_cache()
|
| 238 |
+
if cell_states_to_model is None:
|
| 239 |
+
cos_sims_stack = torch.cat(cos_sims)
|
| 240 |
+
return cos_sims_stack
|
| 241 |
+
else:
|
| 242 |
+
for state in possible_states:
|
| 243 |
+
cos_sims_vs_alt_dict[state] = torch.cat(cos_sims_vs_alt_dict[state])
|
| 244 |
+
return cos_sims_vs_alt_dict
|
| 245 |
+
|
| 246 |
+
# calculate cos sim shift of perturbation with respect to origin and alternative cell
|
| 247 |
+
def cos_sim_shift(original_emb, minibatch_emb, alt_emb):
|
| 248 |
+
cos = torch.nn.CosineSimilarity(dim=2)
|
| 249 |
+
original_emb = torch.mean(original_emb,dim=0,keepdim=True)[None, :]
|
| 250 |
+
alt_emb = alt_emb[None, None, :]
|
| 251 |
+
origin_v_end = cos(original_emb,alt_emb)
|
| 252 |
+
perturb_v_end = cos(torch.mean(minibatch_emb,dim=1,keepdim=True),alt_emb)
|
| 253 |
+
return [(perturb_v_end-origin_v_end).to("cpu")]
|
| 254 |
+
|
| 255 |
+
# pad list of tensors and convert to tensor
|
| 256 |
+
def pad_tensor_list(tensor_list, dynamic_or_constant, token_dictionary):
|
| 257 |
+
|
| 258 |
+
pad_token_id = token_dictionary.get("<pad>")
|
| 259 |
+
|
| 260 |
+
# Determine maximum tensor length
|
| 261 |
+
if dynamic_or_constant == "dynamic":
|
| 262 |
+
max_len = max([tensor.squeeze().numel() for tensor in tensor_list])
|
| 263 |
+
elif type(dynamic_or_constant) == int:
|
| 264 |
+
max_len = dynamic_or_constant
|
| 265 |
+
else:
|
| 266 |
+
logger.warning(
|
| 267 |
+
"If padding style is constant, must provide integer value. " \
|
| 268 |
+
"Setting padding to max input size 2048.")
|
| 269 |
+
|
| 270 |
+
# pad all tensors to maximum length
|
| 271 |
+
tensor_list = [torch.nn.functional.pad(tensor, pad=(0,
|
| 272 |
+
max_len - tensor.numel()),
|
| 273 |
+
mode='constant',
|
| 274 |
+
value=pad_token_id) for tensor in tensor_list]
|
| 275 |
+
|
| 276 |
+
# return stacked tensors
|
| 277 |
+
return torch.stack(tensor_list)
|
| 278 |
+
|
| 279 |
+
class InSilicoPerturber:
|
| 280 |
+
valid_option_dict = {
|
| 281 |
+
"perturb_type": {"delete","overexpress","inhibit","activate"},
|
| 282 |
+
"perturb_rank_shift": {None, int},
|
| 283 |
+
"genes_to_perturb": {"all", list},
|
| 284 |
+
"combos": {0,1,2},
|
| 285 |
+
"anchor_gene": {None, str},
|
| 286 |
+
"model_type": {"Pretrained","GeneClassifier","CellClassifier"},
|
| 287 |
+
"num_classes": {int},
|
| 288 |
+
"emb_mode": {"cell","cell_and_gene"},
|
| 289 |
+
"cell_emb_style": {"mean_pool"},
|
| 290 |
+
"filter_data": {None, dict},
|
| 291 |
+
"cell_states_to_model": {None, dict},
|
| 292 |
+
"max_ncells": {None, int},
|
| 293 |
+
"emb_layer": {-1, 0},
|
| 294 |
+
"forward_batch_size": {int},
|
| 295 |
+
"nproc": {int},
|
| 296 |
+
"save_raw_data": {False, True},
|
| 297 |
+
}
|
| 298 |
+
def __init__(
|
| 299 |
+
self,
|
| 300 |
+
perturb_type="delete",
|
| 301 |
+
perturb_rank_shift=None,
|
| 302 |
+
genes_to_perturb="all",
|
| 303 |
+
combos=0,
|
| 304 |
+
anchor_gene=None,
|
| 305 |
+
model_type="Pretrained",
|
| 306 |
+
num_classes=0,
|
| 307 |
+
emb_mode="cell",
|
| 308 |
+
cell_emb_style="mean_pool",
|
| 309 |
+
filter_data=None,
|
| 310 |
+
cell_states_to_model=None,
|
| 311 |
+
max_ncells=None,
|
| 312 |
+
emb_layer=-1,
|
| 313 |
+
forward_batch_size=100,
|
| 314 |
+
nproc=4,
|
| 315 |
+
save_raw_data=False,
|
| 316 |
+
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
| 317 |
+
):
|
| 318 |
+
"""
|
| 319 |
+
Initialize in silico perturber.
|
| 320 |
+
|
| 321 |
+
Parameters
|
| 322 |
+
----------
|
| 323 |
+
perturb_type : {"delete","overexpress","inhibit","activate"}
|
| 324 |
+
Type of perturbation.
|
| 325 |
+
"delete": delete gene from rank value encoding
|
| 326 |
+
"overexpress": move gene to front of rank value encoding
|
| 327 |
+
"inhibit": move gene to lower quartile of rank value encoding
|
| 328 |
+
"activate": move gene to higher quartile of rank value encoding
|
| 329 |
+
perturb_rank_shift : None, int
|
| 330 |
+
Number of quartiles by which to shift rank of gene.
|
| 331 |
+
For example, if perturb_type="activate" and perturb_rank_shift=1:
|
| 332 |
+
genes in 4th quartile will move to middle of 3rd quartile.
|
| 333 |
+
genes in 3rd quartile will move to middle of 2nd quartile.
|
| 334 |
+
genes in 2nd quartile will move to middle of 1st quartile.
|
| 335 |
+
genes in 1st quartile will move to front of rank value encoding.
|
| 336 |
+
For example, if perturb_type="inhibit" and perturb_rank_shift=2:
|
| 337 |
+
genes in 1st quartile will move to middle of 3rd quartile.
|
| 338 |
+
genes in 2nd quartile will move to middle of 4th quartile.
|
| 339 |
+
genes in 3rd or 4th quartile will move to bottom of rank value encoding.
|
| 340 |
+
genes_to_perturb : "all", list
|
| 341 |
+
Default is perturbing each gene detected in each cell in the dataset.
|
| 342 |
+
Otherwise, may provide a list of ENSEMBL IDs of genes to perturb.
|
| 343 |
+
combos : {0,1,2}
|
| 344 |
+
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
| 345 |
+
anchor_gene : None, str
|
| 346 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations.
|
| 347 |
+
For example, if combos=1 and anchor_gene="ENSG00000148400":
|
| 348 |
+
anchor gene will be perturbed in combination with each other gene.
|
| 349 |
+
model_type : {"Pretrained","GeneClassifier","CellClassifier"}
|
| 350 |
+
Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
|
| 351 |
+
num_classes : int
|
| 352 |
+
If model is a gene or cell classifier, specify number of classes it was trained to classify.
|
| 353 |
+
For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
|
| 354 |
+
emb_mode : {"cell","cell_and_gene"}
|
| 355 |
+
Whether to output impact of perturbation on cell and/or gene embeddings.
|
| 356 |
+
cell_emb_style : "mean_pool"
|
| 357 |
+
Method for summarizing cell embeddings.
|
| 358 |
+
Currently only option is mean pooling of gene embeddings for given cell.
|
| 359 |
+
filter_data : None, dict
|
| 360 |
+
Default is to use all input data for in silico perturbation study.
|
| 361 |
+
Otherwise, dictionary specifying .dataset column name and list of values to filter by.
|
| 362 |
+
cell_states_to_model: None, dict
|
| 363 |
+
Cell states to model if testing perturbations that achieve goal state change.
|
| 364 |
+
Single-item dictionary with key being cell attribute (e.g. "disease").
|
| 365 |
+
Value is tuple of three lists indicating start state, goal end state, and alternate possible end states.
|
| 366 |
+
max_ncells : None, int
|
| 367 |
+
Maximum number of cells to test.
|
| 368 |
+
If None, will test all cells.
|
| 369 |
+
emb_layer : {-1, 0}
|
| 370 |
+
Embedding layer to use for quantification.
|
| 371 |
+
-1: 2nd to last layer (recommended for pretrained Geneformer)
|
| 372 |
+
0: last layer (recommended for cell classifier fine-tuned for disease state)
|
| 373 |
+
forward_batch_size : int
|
| 374 |
+
Batch size for forward pass.
|
| 375 |
+
nproc : int
|
| 376 |
+
Number of CPU processes to use.
|
| 377 |
+
save_raw_data: {False,True}
|
| 378 |
+
Whether to save raw perturbation data for each gene/cell.
|
| 379 |
+
token_dictionary_file : Path
|
| 380 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
+
self.perturb_type = perturb_type
|
| 384 |
+
self.perturb_rank_shift = perturb_rank_shift
|
| 385 |
+
self.genes_to_perturb = genes_to_perturb
|
| 386 |
+
self.combos = combos
|
| 387 |
+
self.anchor_gene = anchor_gene
|
| 388 |
+
self.model_type = model_type
|
| 389 |
+
self.num_classes = num_classes
|
| 390 |
+
self.emb_mode = emb_mode
|
| 391 |
+
self.cell_emb_style = cell_emb_style
|
| 392 |
+
self.filter_data = filter_data
|
| 393 |
+
self.cell_states_to_model = cell_states_to_model
|
| 394 |
+
self.max_ncells = max_ncells
|
| 395 |
+
self.emb_layer = emb_layer
|
| 396 |
+
self.forward_batch_size = forward_batch_size
|
| 397 |
+
self.nproc = nproc
|
| 398 |
+
self.save_raw_data = save_raw_data
|
| 399 |
+
|
| 400 |
+
self.validate_options()
|
| 401 |
+
|
| 402 |
+
# load token dictionary (Ensembl IDs:token)
|
| 403 |
+
with open(token_dictionary_file, "rb") as f:
|
| 404 |
+
self.gene_token_dict = pickle.load(f)
|
| 405 |
+
|
| 406 |
+
if anchor_gene is None:
|
| 407 |
+
self.anchor_token = None
|
| 408 |
+
else:
|
| 409 |
+
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
| 410 |
+
|
| 411 |
+
if genes_to_perturb == "all":
|
| 412 |
+
self.tokens_to_perturb = "all"
|
| 413 |
+
else:
|
| 414 |
+
self.tokens_to_perturb = [self.gene_token_dict[gene] for gene in self.genes_to_perturb]
|
| 415 |
+
|
| 416 |
+
def validate_options(self):
|
| 417 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
| 418 |
+
attr_value = self.__dict__[attr_name]
|
| 419 |
+
if type(attr_value) not in {list, dict}:
|
| 420 |
+
if attr_value in valid_options:
|
| 421 |
+
continue
|
| 422 |
+
valid_type = False
|
| 423 |
+
for option in valid_options:
|
| 424 |
+
if (option in [int,list,dict]) and isinstance(attr_value, option):
|
| 425 |
+
valid_type = True
|
| 426 |
+
break
|
| 427 |
+
if valid_type:
|
| 428 |
+
continue
|
| 429 |
+
logger.error(
|
| 430 |
+
f"Invalid option for {attr_name}. " \
|
| 431 |
+
f"Valid options for {attr_name}: {valid_options}"
|
| 432 |
+
)
|
| 433 |
+
raise
|
| 434 |
+
|
| 435 |
+
if self.perturb_type in ["delete","overexpress"]:
|
| 436 |
+
if self.perturb_rank_shift is not None:
|
| 437 |
+
if self.perturb_type == "delete":
|
| 438 |
+
logger.warning(
|
| 439 |
+
"perturb_rank_shift set to None. " \
|
| 440 |
+
"If perturb type is delete then gene is deleted entirely " \
|
| 441 |
+
"rather than shifted by quartile")
|
| 442 |
+
elif self.perturb_type == "overexpress":
|
| 443 |
+
logger.warning(
|
| 444 |
+
"perturb_rank_shift set to None. " \
|
| 445 |
+
"If perturb type is activate then gene is moved to front " \
|
| 446 |
+
"of rank value encoding rather than shifted by quartile")
|
| 447 |
+
self.perturb_rank_shift = None
|
| 448 |
+
|
| 449 |
+
if (self.anchor_gene is not None) and (self.emb_mode == "cell_and_gene"):
|
| 450 |
+
self.emb_mode = "cell"
|
| 451 |
+
logger.warning(
|
| 452 |
+
"emb_mode set to 'cell'. " \
|
| 453 |
+
"Currently, analysis with anchor gene " \
|
| 454 |
+
"only outputs effect on cell embeddings.")
|
| 455 |
+
|
| 456 |
+
if self.cell_states_to_model is not None:
|
| 457 |
+
if (len(self.cell_states_to_model.items()) == 1):
|
| 458 |
+
for key,value in self.cell_states_to_model.items():
|
| 459 |
+
if (len(value) == 3) and isinstance(value, tuple):
|
| 460 |
+
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
| 461 |
+
if len(value[0]) == 1 and len(value[1]) == 1:
|
| 462 |
+
all_values = value[0]+value[1]+value[2]
|
| 463 |
+
if len(all_values) == len(set(all_values)):
|
| 464 |
+
continue
|
| 465 |
+
else:
|
| 466 |
+
logger.error(
|
| 467 |
+
"Cell states to model must be a single-item dictionary with " \
|
| 468 |
+
"key being cell attribute (e.g. 'disease') and value being " \
|
| 469 |
+
"tuple of three lists indicating start state, goal end state, and alternate possible end states. " \
|
| 470 |
+
"Values should all be unique. " \
|
| 471 |
+
"For example: {'disease':(['dcm'],['ctrl'],['hcm'])}")
|
| 472 |
+
raise
|
| 473 |
+
if self.anchor_gene is not None:
|
| 474 |
+
self.anchor_gene = None
|
| 475 |
+
logger.warning(
|
| 476 |
+
"anchor_gene set to None. " \
|
| 477 |
+
"Currently, anchor gene not available " \
|
| 478 |
+
"when modeling multiple cell states.")
|
| 479 |
+
|
| 480 |
+
if self.perturb_type in ["inhibit","activate"]:
|
| 481 |
+
if self.perturb_rank_shift is None:
|
| 482 |
+
logger.error(
|
| 483 |
+
"If perturb type is inhibit or activate then " \
|
| 484 |
+
"quartile to shift by must be specified.")
|
| 485 |
+
raise
|
| 486 |
+
|
| 487 |
+
for key,value in self.filter_data.items():
|
| 488 |
+
if type(value) != list:
|
| 489 |
+
self.filter_data[key] = [value]
|
| 490 |
+
logger.warning(
|
| 491 |
+
"Values in filter_data dict must be lists. " \
|
| 492 |
+
f"Changing {key} value to list ([{value}]).")
|
| 493 |
+
|
| 494 |
+
def perturb_data(self,
|
| 495 |
+
model_directory,
|
| 496 |
+
input_data_file,
|
| 497 |
+
output_directory,
|
| 498 |
+
output_prefix):
|
| 499 |
+
"""
|
| 500 |
+
Perturb genes in input data and save as results in output_directory.
|
| 501 |
+
|
| 502 |
+
Parameters
|
| 503 |
+
----------
|
| 504 |
+
model_directory : Path
|
| 505 |
+
Path to directory containing model
|
| 506 |
+
input_data_file : Path
|
| 507 |
+
Path to directory containing .dataset inputs
|
| 508 |
+
output_directory : Path
|
| 509 |
+
Path to directory where perturbation data will be saved as .csv
|
| 510 |
+
output_prefix : str
|
| 511 |
+
Prefix for output .dataset
|
| 512 |
+
"""
|
| 513 |
+
|
| 514 |
+
filtered_input_data = self.load_and_filter(input_data_file)
|
| 515 |
+
model = self.load_model(model_directory)
|
| 516 |
+
layer_to_quant = quant_layers(model)+self.emb_layer
|
| 517 |
+
|
| 518 |
+
if self.cell_states_to_model is None:
|
| 519 |
+
state_embs_dict = None
|
| 520 |
+
else:
|
| 521 |
+
# get dictionary of average cell state embeddings for comparison
|
| 522 |
+
state_embs_dict = get_cell_state_avg_embs(model,
|
| 523 |
+
filtered_input_data,
|
| 524 |
+
self.cell_states_to_model,
|
| 525 |
+
layer_to_quant,
|
| 526 |
+
self.gene_token_dict,
|
| 527 |
+
self.forward_batch_size,
|
| 528 |
+
self.nproc)
|
| 529 |
+
self.in_silico_perturb(model,
|
| 530 |
+
filtered_input_data,
|
| 531 |
+
layer_to_quant,
|
| 532 |
+
state_embs_dict,
|
| 533 |
+
output_directory,
|
| 534 |
+
output_prefix)
|
| 535 |
+
|
| 536 |
+
# if self.save_raw_data is False:
|
| 537 |
+
# # delete intermediate dictionaries
|
| 538 |
+
# output_dir = os.listdir(output_directory)
|
| 539 |
+
# for output_file in output_dir:
|
| 540 |
+
# if output_file.endswith("_raw.pickle"):
|
| 541 |
+
# os.remove(os.path.join(output_directory, output_file))
|
| 542 |
+
|
| 543 |
+
# load data and filter by defined criteria
|
| 544 |
+
def load_and_filter(self, input_data_file):
|
| 545 |
+
data = load_from_disk(input_data_file)
|
| 546 |
+
for key,value in self.filter_data.items():
|
| 547 |
+
def filter_data(example):
|
| 548 |
+
return example[key] in value
|
| 549 |
+
data = data.filter(filter_data, num_proc=self.nproc)
|
| 550 |
+
if len(data) == 0:
|
| 551 |
+
logger.error(
|
| 552 |
+
"No cells remain after filtering. Check filtering criteria.")
|
| 553 |
+
raise
|
| 554 |
+
data_shuffled = data.shuffle(seed=42)
|
| 555 |
+
num_cells = len(data_shuffled)
|
| 556 |
+
# if max number of cells is defined, then subsample to this max number
|
| 557 |
+
if self.max_ncells != None:
|
| 558 |
+
num_cells = min(self.max_ncells,num_cells)
|
| 559 |
+
data_subset = data_shuffled.select([i for i in range(num_cells)])
|
| 560 |
+
# sort dataset with largest cell first to encounter any memory errors earlier
|
| 561 |
+
data_sorted = data_subset.sort("length",reverse=True)
|
| 562 |
+
return data_sorted
|
| 563 |
+
|
| 564 |
+
# load model to GPU
|
| 565 |
+
def load_model(self, model_directory):
|
| 566 |
+
if self.model_type == "Pretrained":
|
| 567 |
+
model = BertForMaskedLM.from_pretrained(model_directory,
|
| 568 |
+
output_hidden_states=True,
|
| 569 |
+
output_attentions=False)
|
| 570 |
+
elif self.model_type == "GeneClassifier":
|
| 571 |
+
model = BertForTokenClassification.from_pretrained(model_directory,
|
| 572 |
+
num_labels=self.num_classes,
|
| 573 |
+
output_hidden_states=True,
|
| 574 |
+
output_attentions=False)
|
| 575 |
+
elif self.model_type == "CellClassifier":
|
| 576 |
+
model = BertForSequenceClassification.from_pretrained(model_directory,
|
| 577 |
+
num_labels=self.num_classes,
|
| 578 |
+
output_hidden_states=True,
|
| 579 |
+
output_attentions=False)
|
| 580 |
+
# put the model in eval mode for fwd pass
|
| 581 |
+
model.eval()
|
| 582 |
+
model = model.to("cuda:0")
|
| 583 |
+
return model
|
| 584 |
+
|
| 585 |
+
# determine effect of perturbation on other genes
|
| 586 |
+
def in_silico_perturb(self,
|
| 587 |
+
model,
|
| 588 |
+
filtered_input_data,
|
| 589 |
+
layer_to_quant,
|
| 590 |
+
state_embs_dict,
|
| 591 |
+
output_directory,
|
| 592 |
+
output_prefix):
|
| 593 |
+
|
| 594 |
+
output_path_prefix = f"{output_directory}in_silico_{self.perturb_type}_{output_prefix}_dict_1Kbatch"
|
| 595 |
+
|
| 596 |
+
# filter dataset for cells that have tokens to be perturbed
|
| 597 |
+
if self.anchor_token is not None:
|
| 598 |
+
def if_has_tokens_to_perturb(example):
|
| 599 |
+
return (len(set(example["input_ids"]).intersection(self.anchor_token))==len(self.anchor_token))
|
| 600 |
+
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc)
|
| 601 |
+
logger.info(f"# cells with anchor gene: {len(filtered_input_data)}")
|
| 602 |
+
if self.tokens_to_perturb != "all":
|
| 603 |
+
def if_has_tokens_to_perturb(example):
|
| 604 |
+
return (len(set(example["input_ids"]).intersection(self.tokens_to_perturb))>self.combos)
|
| 605 |
+
filtered_input_data = filtered_input_data.filter(if_has_tokens_to_perturb, num_proc=self.nproc)
|
| 606 |
+
|
| 607 |
+
cos_sims_dict = defaultdict(list)
|
| 608 |
+
pickle_batch = -1
|
| 609 |
+
|
| 610 |
+
for i in trange(len(filtered_input_data)):
|
| 611 |
+
example_cell = filtered_input_data.select([i])
|
| 612 |
+
original_emb = forward_pass_single_cell(model, example_cell, layer_to_quant)
|
| 613 |
+
gene_list = torch.squeeze(example_cell["input_ids"])
|
| 614 |
+
|
| 615 |
+
# reset to original type to prevent downstream issues due to forward_pass_single_cell modifying as torch format in place
|
| 616 |
+
example_cell = filtered_input_data.select([i])
|
| 617 |
+
|
| 618 |
+
if self.anchor_token is None:
|
| 619 |
+
for combo_lvl in range(self.combos+1):
|
| 620 |
+
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell,
|
| 621 |
+
self.perturb_type,
|
| 622 |
+
self.tokens_to_perturb,
|
| 623 |
+
self.anchor_token,
|
| 624 |
+
combo_lvl,
|
| 625 |
+
self.nproc)
|
| 626 |
+
cos_sims_data = quant_cos_sims(model,
|
| 627 |
+
perturbation_batch,
|
| 628 |
+
self.forward_batch_size,
|
| 629 |
+
layer_to_quant,
|
| 630 |
+
original_emb,
|
| 631 |
+
indices_to_perturb,
|
| 632 |
+
self.cell_states_to_model,
|
| 633 |
+
state_embs_dict)
|
| 634 |
+
|
| 635 |
+
if self.cell_states_to_model is None:
|
| 636 |
+
# update cos sims dict
|
| 637 |
+
# key is tuple of (perturbed_gene, affected_gene)
|
| 638 |
+
# or (perturbed_gene, "cell_emb") for avg cell emb change
|
| 639 |
+
cos_sims_data = cos_sims_data.to("cuda")
|
| 640 |
+
for j in range(cos_sims_data.shape[0]):
|
| 641 |
+
if self.genes_to_perturb != "all":
|
| 642 |
+
j_index = torch.tensor(indices_to_perturb[j])
|
| 643 |
+
if j_index.shape[0]>1:
|
| 644 |
+
j_index = torch.squeeze(j_index)
|
| 645 |
+
else:
|
| 646 |
+
j_index = torch.tensor([j])
|
| 647 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index)
|
| 648 |
+
|
| 649 |
+
if perturbed_gene.shape[0]==1:
|
| 650 |
+
perturbed_gene = perturbed_gene.item()
|
| 651 |
+
elif perturbed_gene.shape[0]>1:
|
| 652 |
+
perturbed_gene = tuple(perturbed_gene.tolist())
|
| 653 |
+
|
| 654 |
+
cell_cos_sim = torch.mean(cos_sims_data[j]).item()
|
| 655 |
+
cos_sims_dict[(perturbed_gene, "cell_emb")] += [cell_cos_sim]
|
| 656 |
+
|
| 657 |
+
# not_j_index = list(set(i for i in range(gene_list.shape[0])).difference(j_index))
|
| 658 |
+
# gene_list_j = torch.index_select(gene_list, 0, j_index)
|
| 659 |
+
if self.emb_mode == "cell_and_gene":
|
| 660 |
+
for k in range(cos_sims_data.shape[1]):
|
| 661 |
+
cos_sim_value = cos_sims_data[j][k]
|
| 662 |
+
affected_gene = gene_list[k].item()
|
| 663 |
+
cos_sims_dict[(perturbed_gene, affected_gene)] += [cos_sim_value.item()]
|
| 664 |
+
else:
|
| 665 |
+
# update cos sims dict
|
| 666 |
+
# key is tuple of (perturbed_gene, "cell_emb")
|
| 667 |
+
# value is list of tuples of cos sims for cell_states_to_model
|
| 668 |
+
origin_state_key = [value[0] for value in self.cell_states_to_model.values()][0][0]
|
| 669 |
+
cos_sims_origin = cos_sims_data[origin_state_key]
|
| 670 |
+
|
| 671 |
+
for j in range(cos_sims_origin.shape[0]):
|
| 672 |
+
if (self.genes_to_perturb != "all") or (combo_lvl>0):
|
| 673 |
+
j_index = torch.tensor(indices_to_perturb[j])
|
| 674 |
+
if j_index.shape[0]>1:
|
| 675 |
+
j_index = torch.squeeze(j_index)
|
| 676 |
+
else:
|
| 677 |
+
j_index = torch.tensor([j])
|
| 678 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index)
|
| 679 |
+
|
| 680 |
+
if perturbed_gene.shape[0]==1:
|
| 681 |
+
perturbed_gene = perturbed_gene.item()
|
| 682 |
+
elif perturbed_gene.shape[0]>1:
|
| 683 |
+
perturbed_gene = tuple(perturbed_gene.tolist())
|
| 684 |
+
|
| 685 |
+
data_list = []
|
| 686 |
+
for data in list(cos_sims_data.values()):
|
| 687 |
+
data_item = data.to("cuda")
|
| 688 |
+
cell_data = torch.mean(data_item[j]).item()
|
| 689 |
+
data_list += [cell_data]
|
| 690 |
+
cos_sims_dict[(perturbed_gene, "cell_emb")] += [tuple(data_list)]
|
| 691 |
+
|
| 692 |
+
elif self.anchor_token is not None:
|
| 693 |
+
perturbation_batch, indices_to_perturb = make_perturbation_batch(example_cell,
|
| 694 |
+
self.perturb_type,
|
| 695 |
+
self.tokens_to_perturb,
|
| 696 |
+
None, # first run without anchor token to test individual gene perturbations
|
| 697 |
+
0,
|
| 698 |
+
self.nproc)
|
| 699 |
+
cos_sims_data = quant_cos_sims(model,
|
| 700 |
+
perturbation_batch,
|
| 701 |
+
self.forward_batch_size,
|
| 702 |
+
layer_to_quant,
|
| 703 |
+
original_emb,
|
| 704 |
+
indices_to_perturb,
|
| 705 |
+
self.cell_states_to_model,
|
| 706 |
+
state_embs_dict)
|
| 707 |
+
cos_sims_data = cos_sims_data.to("cuda")
|
| 708 |
+
|
| 709 |
+
combo_perturbation_batch, combo_indices_to_perturb = make_perturbation_batch(example_cell,
|
| 710 |
+
self.perturb_type,
|
| 711 |
+
self.tokens_to_perturb,
|
| 712 |
+
self.anchor_token,
|
| 713 |
+
1,
|
| 714 |
+
self.nproc)
|
| 715 |
+
combo_cos_sims_data = quant_cos_sims(model,
|
| 716 |
+
combo_perturbation_batch,
|
| 717 |
+
self.forward_batch_size,
|
| 718 |
+
layer_to_quant,
|
| 719 |
+
original_emb,
|
| 720 |
+
combo_indices_to_perturb,
|
| 721 |
+
self.cell_states_to_model,
|
| 722 |
+
state_embs_dict)
|
| 723 |
+
combo_cos_sims_data = combo_cos_sims_data.to("cuda")
|
| 724 |
+
|
| 725 |
+
# update cos sims dict
|
| 726 |
+
# key is tuple of (perturbed_gene, "cell_emb") for avg cell emb change
|
| 727 |
+
anchor_index = example_cell["input_ids"][0].index(self.anchor_token[0])
|
| 728 |
+
anchor_cell_cos_sim = torch.mean(cos_sims_data[anchor_index]).item()
|
| 729 |
+
non_anchor_indices = [k for k in range(cos_sims_data.shape[0]) if k != anchor_index]
|
| 730 |
+
cos_sims_data = cos_sims_data[non_anchor_indices,:]
|
| 731 |
+
|
| 732 |
+
for j in range(cos_sims_data.shape[0]):
|
| 733 |
+
|
| 734 |
+
if j<anchor_index:
|
| 735 |
+
j_index = torch.tensor([j])
|
| 736 |
+
else:
|
| 737 |
+
j_index = torch.tensor([j+1])
|
| 738 |
+
|
| 739 |
+
perturbed_gene = torch.index_select(gene_list, 0, j_index)
|
| 740 |
+
perturbed_gene = perturbed_gene.item()
|
| 741 |
+
|
| 742 |
+
cell_cos_sim = torch.mean(cos_sims_data[j]).item()
|
| 743 |
+
combo_cos_sim = torch.mean(combo_cos_sims_data[j]).item()
|
| 744 |
+
cos_sims_dict[(perturbed_gene, "cell_emb")] += [(anchor_cell_cos_sim, # cos sim anchor gene alone
|
| 745 |
+
cell_cos_sim, # cos sim deleted gene alone
|
| 746 |
+
combo_cos_sim)] # cos sim anchor gene + deleted gene
|
| 747 |
+
|
| 748 |
+
# save dict to disk every 100 cells
|
| 749 |
+
if (i/100).is_integer():
|
| 750 |
+
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp:
|
| 751 |
+
pickle.dump(cos_sims_dict, fp)
|
| 752 |
+
# reset and clear memory every 1000 cells
|
| 753 |
+
if (i/1000).is_integer():
|
| 754 |
+
pickle_batch = pickle_batch+1
|
| 755 |
+
# clear memory
|
| 756 |
+
del perturbed_gene
|
| 757 |
+
del cos_sims_data
|
| 758 |
+
if self.cell_states_to_model is None:
|
| 759 |
+
del cell_cos_sim
|
| 760 |
+
if self.cell_states_to_model is not None:
|
| 761 |
+
del cell_data
|
| 762 |
+
del data_list
|
| 763 |
+
elif self.anchor_token is None:
|
| 764 |
+
del affected_gene
|
| 765 |
+
del cos_sim_value
|
| 766 |
+
else:
|
| 767 |
+
del combo_cos_sim
|
| 768 |
+
del combo_cos_sims_data
|
| 769 |
+
# reset dict
|
| 770 |
+
del cos_sims_dict
|
| 771 |
+
cos_sims_dict = defaultdict(list)
|
| 772 |
+
torch.cuda.empty_cache()
|
| 773 |
+
|
| 774 |
+
# save remainder cells
|
| 775 |
+
with open(f"{output_path_prefix}{pickle_batch}_raw.pickle", "wb") as fp:
|
| 776 |
+
pickle.dump(cos_sims_dict, fp)
|
| 777 |
+
|
geneformer/in_silico_perturber_stats.py
ADDED
|
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Geneformer in silico perturber stats generator.
|
| 3 |
+
|
| 4 |
+
Usage:
|
| 5 |
+
from geneformer import InSilicoPerturberStats
|
| 6 |
+
ispstats = InSilicoPerturberStats(mode="goal_state_shift",
|
| 7 |
+
combos=0,
|
| 8 |
+
anchor_gene=None,
|
| 9 |
+
cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])})
|
| 10 |
+
ispstats.get_stats("path/to/input_data",
|
| 11 |
+
None,
|
| 12 |
+
"path/to/output_directory",
|
| 13 |
+
"output_prefix")
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import logging
|
| 19 |
+
import numpy as np
|
| 20 |
+
import pandas as pd
|
| 21 |
+
import pickle
|
| 22 |
+
import statsmodels.stats.multitest as smt
|
| 23 |
+
from pathlib import Path
|
| 24 |
+
from scipy.stats import ranksums
|
| 25 |
+
from tqdm.notebook import trange
|
| 26 |
+
|
| 27 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
| 28 |
+
|
| 29 |
+
GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
| 30 |
+
|
| 31 |
+
logger = logging.getLogger(__name__)
|
| 32 |
+
|
| 33 |
+
# invert dictionary keys/values
|
| 34 |
+
def invert_dict(dictionary):
|
| 35 |
+
return {v: k for k, v in dictionary.items()}
|
| 36 |
+
|
| 37 |
+
# read raw dictionary files
|
| 38 |
+
def read_dictionaries(dir, cell_or_gene_emb):
|
| 39 |
+
dict_list = []
|
| 40 |
+
for file in os.listdir(dir):
|
| 41 |
+
# process only _raw.pickle files
|
| 42 |
+
if file.endswith("_raw.pickle"):
|
| 43 |
+
with open(f"{dir}/{file}", "rb") as fp:
|
| 44 |
+
cos_sims_dict = pickle.load(fp)
|
| 45 |
+
if cell_or_gene_emb == "cell":
|
| 46 |
+
cell_emb_dict = {k: v for k,
|
| 47 |
+
v in cos_sims_dict.items() if v and "cell_emb" in k}
|
| 48 |
+
dict_list += [cell_emb_dict]
|
| 49 |
+
return dict_list
|
| 50 |
+
|
| 51 |
+
# get complete gene list
|
| 52 |
+
def get_gene_list(dict_list):
|
| 53 |
+
gene_set = set()
|
| 54 |
+
for dict_i in dict_list:
|
| 55 |
+
gene_set.update([k[0] for k, v in dict_i.items() if v])
|
| 56 |
+
gene_list = list(gene_set)
|
| 57 |
+
gene_list.sort()
|
| 58 |
+
return gene_list
|
| 59 |
+
|
| 60 |
+
def n_detections(token, dict_list):
|
| 61 |
+
cos_sim_megalist = []
|
| 62 |
+
for dict_i in dict_list:
|
| 63 |
+
cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
|
| 64 |
+
return len(cos_sim_megalist)
|
| 65 |
+
|
| 66 |
+
def get_fdr(pvalues):
|
| 67 |
+
return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
|
| 68 |
+
|
| 69 |
+
def isp_stats(cos_sims_df, dict_list, cell_states_to_model):
|
| 70 |
+
|
| 71 |
+
random_tuples = []
|
| 72 |
+
for i in trange(cos_sims_df.shape[0]):
|
| 73 |
+
token = cos_sims_df["Gene"][i]
|
| 74 |
+
for dict_i in dict_list:
|
| 75 |
+
random_tuples += dict_i.get((token, "cell_emb"),[])
|
| 76 |
+
goal_end_random_megalist = [goal_end for goal_end,alt_end,start_state in random_tuples]
|
| 77 |
+
alt_end_random_megalist = [alt_end for goal_end,alt_end,start_state in random_tuples]
|
| 78 |
+
start_state_random_megalist = [start_state for goal_end,alt_end,start_state in random_tuples]
|
| 79 |
+
|
| 80 |
+
# downsample to improve speed of ranksums
|
| 81 |
+
if len(goal_end_random_megalist) > 100_000:
|
| 82 |
+
random.seed(42)
|
| 83 |
+
goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
|
| 84 |
+
if len(alt_end_random_megalist) > 100_000:
|
| 85 |
+
random.seed(42)
|
| 86 |
+
alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)
|
| 87 |
+
if len(start_state_random_megalist) > 100_000:
|
| 88 |
+
random.seed(42)
|
| 89 |
+
start_state_random_megalist = random.sample(start_state_random_megalist, k=100_000)
|
| 90 |
+
|
| 91 |
+
names=["Gene",
|
| 92 |
+
"Gene_name",
|
| 93 |
+
"Ensembl_ID",
|
| 94 |
+
"Shift_from_goal_end",
|
| 95 |
+
"Shift_from_alt_end",
|
| 96 |
+
"Goal_end_vs_random_pval",
|
| 97 |
+
"Alt_end_vs_random_pval"]
|
| 98 |
+
cos_sims_full_df = pd.DataFrame(columns=names)
|
| 99 |
+
|
| 100 |
+
for i in trange(cos_sims_df.shape[0]):
|
| 101 |
+
token = cos_sims_df["Gene"][i]
|
| 102 |
+
name = cos_sims_df["Gene_name"][i]
|
| 103 |
+
ensembl_id = cos_sims_df["Ensembl_ID"][i]
|
| 104 |
+
token_tuples = []
|
| 105 |
+
|
| 106 |
+
for dict_i in dict_list:
|
| 107 |
+
token_tuples += dict_i.get((token, "cell_emb"),[])
|
| 108 |
+
|
| 109 |
+
goal_end_cos_sim_megalist = [goal_end for goal_end,alt_end,start_state in token_tuples]
|
| 110 |
+
alt_end_cos_sim_megalist = [alt_end for goal_end,alt_end,start_state in token_tuples]
|
| 111 |
+
|
| 112 |
+
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
|
| 113 |
+
mean_alt_end = np.mean(alt_end_cos_sim_megalist)
|
| 114 |
+
|
| 115 |
+
pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue
|
| 116 |
+
pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue
|
| 117 |
+
|
| 118 |
+
data_i = [token,
|
| 119 |
+
name,
|
| 120 |
+
ensembl_id,
|
| 121 |
+
mean_goal_end,
|
| 122 |
+
mean_alt_end,
|
| 123 |
+
pval_goal_end,
|
| 124 |
+
pval_alt_end]
|
| 125 |
+
|
| 126 |
+
cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
|
| 127 |
+
cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
|
| 128 |
+
|
| 129 |
+
cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
|
| 130 |
+
cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
|
| 131 |
+
|
| 132 |
+
return cos_sims_full_df
|
| 133 |
+
|
| 134 |
+
class InSilicoPerturberStats:
|
| 135 |
+
valid_option_dict = {
|
| 136 |
+
"mode": {"goal_state_shift","vs_null","vs_random"},
|
| 137 |
+
"combos": {0,1,2},
|
| 138 |
+
"anchor_gene": {None, str},
|
| 139 |
+
"cell_states_to_model": {None, dict},
|
| 140 |
+
}
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
mode="vs_random",
|
| 144 |
+
combos=0,
|
| 145 |
+
anchor_gene=None,
|
| 146 |
+
cell_states_to_model=None,
|
| 147 |
+
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
| 148 |
+
gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
|
| 149 |
+
):
|
| 150 |
+
"""
|
| 151 |
+
Initialize in silico perturber stats generator.
|
| 152 |
+
|
| 153 |
+
Parameters
|
| 154 |
+
----------
|
| 155 |
+
mode : {"goal_state_shift","vs_null","vs_random"}
|
| 156 |
+
Type of stats.
|
| 157 |
+
"goal_state_shift": perturbation vs. random for desired cell state shift
|
| 158 |
+
"vs_null": perturbation vs. null from provided null distribution dataset
|
| 159 |
+
"vs_random": perturbation vs. random gene perturbations in that cell (no goal direction)
|
| 160 |
+
combos : {0,1,2}
|
| 161 |
+
Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
|
| 162 |
+
anchor_gene : None, str
|
| 163 |
+
ENSEMBL ID of gene to use as anchor in combination perturbations.
|
| 164 |
+
For example, if combos=1 and anchor_gene="ENSG00000148400":
|
| 165 |
+
anchor gene will be perturbed in combination with each other gene.
|
| 166 |
+
cell_states_to_model: None, dict
|
| 167 |
+
Cell states to model if testing perturbations that achieve goal state change.
|
| 168 |
+
Single-item dictionary with key being cell attribute (e.g. "disease").
|
| 169 |
+
Value is tuple of three lists indicating start state, goal end state, and alternate possible end states.
|
| 170 |
+
token_dictionary_file : Path
|
| 171 |
+
Path to pickle file containing token dictionary (Ensembl ID:token).
|
| 172 |
+
gene_name_id_dictionary_file : Path
|
| 173 |
+
Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
self.mode = mode
|
| 177 |
+
self.combos = combos
|
| 178 |
+
self.anchor_gene = anchor_gene
|
| 179 |
+
self.cell_states_to_model = cell_states_to_model
|
| 180 |
+
|
| 181 |
+
self.validate_options()
|
| 182 |
+
|
| 183 |
+
# load token dictionary (Ensembl IDs:token)
|
| 184 |
+
with open(token_dictionary_file, "rb") as f:
|
| 185 |
+
self.gene_token_dict = pickle.load(f)
|
| 186 |
+
|
| 187 |
+
# load gene name dictionary (gene name:Ensembl ID)
|
| 188 |
+
with open(gene_name_id_dictionary_file, "rb") as f:
|
| 189 |
+
self.gene_name_id_dict = pickle.load(f)
|
| 190 |
+
|
| 191 |
+
if anchor_gene is None:
|
| 192 |
+
self.anchor_token = None
|
| 193 |
+
else:
|
| 194 |
+
self.anchor_token = self.gene_token_dict[self.anchor_gene]
|
| 195 |
+
|
| 196 |
+
def validate_options(self):
|
| 197 |
+
for attr_name,valid_options in self.valid_option_dict.items():
|
| 198 |
+
attr_value = self.__dict__[attr_name]
|
| 199 |
+
if type(attr_value) not in {list, dict}:
|
| 200 |
+
if attr_value in valid_options:
|
| 201 |
+
continue
|
| 202 |
+
valid_type = False
|
| 203 |
+
for option in valid_options:
|
| 204 |
+
if (option in [int,list,dict]) and isinstance(attr_value, option):
|
| 205 |
+
valid_type = True
|
| 206 |
+
break
|
| 207 |
+
if valid_type:
|
| 208 |
+
continue
|
| 209 |
+
logger.error(
|
| 210 |
+
f"Invalid option for {attr_name}. " \
|
| 211 |
+
f"Valid options for {attr_name}: {valid_options}"
|
| 212 |
+
)
|
| 213 |
+
raise
|
| 214 |
+
|
| 215 |
+
if self.cell_states_to_model is not None:
|
| 216 |
+
if (len(self.cell_states_to_model.items()) == 1):
|
| 217 |
+
for key,value in self.cell_states_to_model.items():
|
| 218 |
+
if (len(value) == 3) and isinstance(value, tuple):
|
| 219 |
+
if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
|
| 220 |
+
if len(value[0]) == 1 and len(value[1]) == 1:
|
| 221 |
+
all_values = value[0]+value[1]+value[2]
|
| 222 |
+
if len(all_values) == len(set(all_values)):
|
| 223 |
+
continue
|
| 224 |
+
else:
|
| 225 |
+
logger.error(
|
| 226 |
+
"Cell states to model must be a single-item dictionary with " \
|
| 227 |
+
"key being cell attribute (e.g. 'disease') and value being " \
|
| 228 |
+
"tuple of three lists indicating start state, goal end state, and alternate possible end states. " \
|
| 229 |
+
"Values should all be unique. " \
|
| 230 |
+
"For example: {'disease':(['start_state'],['ctrl'],['alt_end'])}")
|
| 231 |
+
raise
|
| 232 |
+
if self.anchor_gene is not None:
|
| 233 |
+
self.anchor_gene = None
|
| 234 |
+
logger.warning(
|
| 235 |
+
"anchor_gene set to None. " \
|
| 236 |
+
"Currently, anchor gene not available " \
|
| 237 |
+
"when modeling multiple cell states.")
|
| 238 |
+
|
| 239 |
+
def get_stats(self,
|
| 240 |
+
input_data_directory,
|
| 241 |
+
null_dist_data_directory,
|
| 242 |
+
output_directory,
|
| 243 |
+
output_prefix):
|
| 244 |
+
"""
|
| 245 |
+
Get stats for in silico perturbation data and save as results in output_directory.
|
| 246 |
+
|
| 247 |
+
Parameters
|
| 248 |
+
----------
|
| 249 |
+
input_data_directory : Path
|
| 250 |
+
Path to directory containing cos_sim dictionary inputs
|
| 251 |
+
null_dist_data_directory : Path
|
| 252 |
+
Path to directory containing null distribution cos_sim dictionary inputs
|
| 253 |
+
output_directory : Path
|
| 254 |
+
Path to directory where perturbation data will be saved as .csv
|
| 255 |
+
output_prefix : str
|
| 256 |
+
Prefix for output .dataset
|
| 257 |
+
"""
|
| 258 |
+
|
| 259 |
+
self.gene_token_id_dict = invert_dict(self.gene_token_dict)
|
| 260 |
+
self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
|
| 261 |
+
|
| 262 |
+
if self.mode == "goal_state_shift":
|
| 263 |
+
dict_list = read_dictionaries(input_data_directory,"cell")
|
| 264 |
+
else:
|
| 265 |
+
logger.error(
|
| 266 |
+
"Currently, only mode available is stats for goal_state_shift.")
|
| 267 |
+
raise
|
| 268 |
+
|
| 269 |
+
# obtain total gene list
|
| 270 |
+
gene_list = get_gene_list(dict_list)
|
| 271 |
+
|
| 272 |
+
# initiate results dataframe
|
| 273 |
+
cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
|
| 274 |
+
"Gene_name": [self.token_to_gene_name(item) \
|
| 275 |
+
for item in gene_list], \
|
| 276 |
+
"Ensembl_ID": [self.gene_token_id_dict[genes[1]] \
|
| 277 |
+
if isinstance(genes,tuple) else \
|
| 278 |
+
self.gene_token_id_dict[genes] \
|
| 279 |
+
for genes in gene_list]}, \
|
| 280 |
+
index=[i for i in range(len(gene_list))])
|
| 281 |
+
|
| 282 |
+
# # add ENSEMBL ID for genes
|
| 283 |
+
# cos_sims_df_initial["Ensembl_ID"] = [self.gene_token_id_dict[genes[1]] if isinstance(genes,tuple) else self.gene_token_id_dict[genes] for genes in list(cos_sims_df_initial["Gene"])]
|
| 284 |
+
|
| 285 |
+
cos_sims_df = isp_stats(cos_sims_df_initial, dict_list, self.cell_states_to_model)
|
| 286 |
+
|
| 287 |
+
# quantify number of detections of each gene
|
| 288 |
+
cos_sims_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_df["Gene"]]
|
| 289 |
+
|
| 290 |
+
# sort by shift to desired state
|
| 291 |
+
cos_sims_df = cos_sims_df.sort_values(by=["Shift_from_goal_end",
|
| 292 |
+
"Goal_end_FDR"])
|
| 293 |
+
|
| 294 |
+
# save perturbation stats to output_path
|
| 295 |
+
output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
|
| 296 |
+
cos_sims_df.to_csv(output_path)
|
| 297 |
+
|
| 298 |
+
def token_to_gene_name(self, item):
|
| 299 |
+
if isinstance(item,int):
|
| 300 |
+
return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
|
| 301 |
+
if isinstance(item,tuple):
|
| 302 |
+
return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])
|
geneformer/pretrainer.py
CHANGED
|
@@ -377,7 +377,7 @@ class GeneformerPreCollator(SpecialTokensMixin):
|
|
| 377 |
return_tensors = "tf" if return_tensors is None else return_tensors
|
| 378 |
elif is_torch_available() and _is_torch(first_element):
|
| 379 |
return_tensors = "pt" if return_tensors is None else return_tensors
|
| 380 |
-
|
| 381 |
return_tensors = "np" if return_tensors is None else return_tensors
|
| 382 |
else:
|
| 383 |
raise ValueError(
|
|
@@ -387,6 +387,7 @@ class GeneformerPreCollator(SpecialTokensMixin):
|
|
| 387 |
|
| 388 |
for key, value in encoded_inputs.items():
|
| 389 |
encoded_inputs[key] = to_py_obj(value)
|
|
|
|
| 390 |
|
| 391 |
# Convert padding_strategy in PaddingStrategy
|
| 392 |
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
|
|
|
| 377 |
return_tensors = "tf" if return_tensors is None else return_tensors
|
| 378 |
elif is_torch_available() and _is_torch(first_element):
|
| 379 |
return_tensors = "pt" if return_tensors is None else return_tensors
|
| 380 |
+
if isinstance(first_element, np.ndarray):
|
| 381 |
return_tensors = "np" if return_tensors is None else return_tensors
|
| 382 |
else:
|
| 383 |
raise ValueError(
|
|
|
|
| 387 |
|
| 388 |
for key, value in encoded_inputs.items():
|
| 389 |
encoded_inputs[key] = to_py_obj(value)
|
| 390 |
+
|
| 391 |
|
| 392 |
# Convert padding_strategy in PaddingStrategy
|
| 393 |
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|