krotima1
commited on
Commit
·
2b70e5b
1
Parent(s):
7005a40
feat: add summarizer
Browse files- MultilingualSummarizer.ipynb +42 -19
MultilingualSummarizer.ipynb
CHANGED
|
@@ -13,11 +13,7 @@
|
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
"execution_count": null,
|
| 16 |
-
"metadata": {
|
| 17 |
-
"vscode": {
|
| 18 |
-
"languageId": "python"
|
| 19 |
-
}
|
| 20 |
-
},
|
| 21 |
"outputs": [],
|
| 22 |
"source": [
|
| 23 |
"import torch as pt\n",
|
|
@@ -30,6 +26,7 @@
|
|
| 30 |
"from transformers import AutoTokenizer\n",
|
| 31 |
"import datasets\n",
|
| 32 |
"\n",
|
|
|
|
| 33 |
"import logging\n",
|
| 34 |
"logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(name)s | %(levelname)s | %(message)s')\n",
|
| 35 |
"\n",
|
|
@@ -56,10 +53,12 @@
|
|
| 56 |
" #\n",
|
| 57 |
" def __init__(self, model_name, language, inference_cfg=None, **kwargs):\n",
|
| 58 |
" logging.info(f\"Initializing multilingual summarizer {model_name}\")\n",
|
|
|
|
| 59 |
" self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
| 60 |
-
" self.dstTokenizer = DatasetTokenizer(
|
| 61 |
" self.tokenizer = self.dstTokenizer.get_tokenizer()\n",
|
| 62 |
" self.langid = self.dstTokenizer.get_langid()\n",
|
|
|
|
| 63 |
" self.inference_cfg = inference_cfg\n",
|
| 64 |
" self.enc_max_len = 512\n",
|
| 65 |
" self.language = language\n",
|
|
@@ -114,7 +113,8 @@
|
|
| 114 |
" summarizer = Summarizer(model = self.model, tokenizer = self.tokenizer,lcode=self.langid, batch_size = 8)\n",
|
| 115 |
" \n",
|
| 116 |
" #Summarize texts\n",
|
| 117 |
-
"
|
|
|
|
| 118 |
" \n",
|
| 119 |
" \n",
|
| 120 |
" scores = {}\n",
|
|
@@ -125,17 +125,16 @@
|
|
| 125 |
" \n",
|
| 126 |
" \n",
|
| 127 |
" return (summarizer.summarized_dst['summary'], scores)\n",
|
| 128 |
-
" \n"
|
|
|
|
|
|
|
|
|
|
| 129 |
]
|
| 130 |
},
|
| 131 |
{
|
| 132 |
"cell_type": "code",
|
| 133 |
"execution_count": null,
|
| 134 |
-
"metadata": {
|
| 135 |
-
"vscode": {
|
| 136 |
-
"languageId": "python"
|
| 137 |
-
}
|
| 138 |
-
},
|
| 139 |
"outputs": [],
|
| 140 |
"source": [
|
| 141 |
"## Configuration of summarization pipeline\n",
|
|
@@ -185,24 +184,36 @@
|
|
| 185 |
" ])\n",
|
| 186 |
" return cfg\n",
|
| 187 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
"cfg = summ_config()\n",
|
| 189 |
"msummarizer = MultiSummarizer(**cfg)\n",
|
| 190 |
-
"ret = msummarizer(**cfg)
|
| 191 |
]
|
| 192 |
},
|
| 193 |
{
|
| 194 |
"cell_type": "code",
|
| 195 |
"execution_count": null,
|
| 196 |
-
"metadata": {
|
| 197 |
-
"vscode": {
|
| 198 |
-
"languageId": "python"
|
| 199 |
-
}
|
| 200 |
-
},
|
| 201 |
"outputs": [],
|
| 202 |
"source": [
|
| 203 |
"ret = msummarizer(**cfg)\n",
|
| 204 |
"print(ret)"
|
| 205 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
}
|
| 207 |
],
|
| 208 |
"metadata": {
|
|
@@ -211,6 +222,18 @@
|
|
| 211 |
"language": "python",
|
| 212 |
"name": "python3"
|
| 213 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
"orig_nbformat": 4
|
| 215 |
},
|
| 216 |
"nbformat": 4,
|
|
|
|
| 13 |
{
|
| 14 |
"cell_type": "code",
|
| 15 |
"execution_count": null,
|
| 16 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"outputs": [],
|
| 18 |
"source": [
|
| 19 |
"import torch as pt\n",
|
|
|
|
| 26 |
"from transformers import AutoTokenizer\n",
|
| 27 |
"import datasets\n",
|
| 28 |
"\n",
|
| 29 |
+
"import re\n",
|
| 30 |
"import logging\n",
|
| 31 |
"logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(name)s | %(levelname)s | %(message)s')\n",
|
| 32 |
"\n",
|
|
|
|
| 53 |
" #\n",
|
| 54 |
" def __init__(self, model_name, language, inference_cfg=None, **kwargs):\n",
|
| 55 |
" logging.info(f\"Initializing multilingual summarizer {model_name}\")\n",
|
| 56 |
+
" self.name = model_name.split('/')[-1]\n",
|
| 57 |
" self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)\n",
|
| 58 |
+
" self.dstTokenizer = DatasetTokenizer(self.name, model_name, language)\n",
|
| 59 |
" self.tokenizer = self.dstTokenizer.get_tokenizer()\n",
|
| 60 |
" self.langid = self.dstTokenizer.get_langid()\n",
|
| 61 |
+
" self.lang_token = self.dstTokenizer.get_lang_token()\n",
|
| 62 |
" self.inference_cfg = inference_cfg\n",
|
| 63 |
" self.enc_max_len = 512\n",
|
| 64 |
" self.language = language\n",
|
|
|
|
| 113 |
" summarizer = Summarizer(model = self.model, tokenizer = self.tokenizer,lcode=self.langid, batch_size = 8)\n",
|
| 114 |
" \n",
|
| 115 |
" #Summarize texts\n",
|
| 116 |
+
" filter_fc = self._filter_final_summaries if self.name.startswith('mt5') else None\n",
|
| 117 |
+
" summarizer.summarize_dst(tok_dst, filter_fc_batch = filter_fc,**self.inference_cfg)\n",
|
| 118 |
" \n",
|
| 119 |
" \n",
|
| 120 |
" scores = {}\n",
|
|
|
|
| 125 |
" \n",
|
| 126 |
" \n",
|
| 127 |
" return (summarizer.summarized_dst['summary'], scores)\n",
|
| 128 |
+
" \n",
|
| 129 |
+
" def _filter_final_summaries(self, batch, **kwargs):\n",
|
| 130 |
+
" batch[\"summary\"] = [ re.sub(self.lang_token, '', tmp) for tmp in batch[\"summary\"]]\n",
|
| 131 |
+
" return batch"
|
| 132 |
]
|
| 133 |
},
|
| 134 |
{
|
| 135 |
"cell_type": "code",
|
| 136 |
"execution_count": null,
|
| 137 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
"outputs": [],
|
| 139 |
"source": [
|
| 140 |
"## Configuration of summarization pipeline\n",
|
|
|
|
| 184 |
" ])\n",
|
| 185 |
" return cfg\n",
|
| 186 |
"\n",
|
| 187 |
+
"\n"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": null,
|
| 193 |
+
"metadata": {},
|
| 194 |
+
"outputs": [],
|
| 195 |
+
"source": [
|
| 196 |
"cfg = summ_config()\n",
|
| 197 |
"msummarizer = MultiSummarizer(**cfg)\n",
|
| 198 |
+
"ret = msummarizer(**cfg)"
|
| 199 |
]
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"cell_type": "code",
|
| 203 |
"execution_count": null,
|
| 204 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
"outputs": [],
|
| 206 |
"source": [
|
| 207 |
"ret = msummarizer(**cfg)\n",
|
| 208 |
"print(ret)"
|
| 209 |
]
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"cell_type": "code",
|
| 213 |
+
"execution_count": null,
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": []
|
| 217 |
}
|
| 218 |
],
|
| 219 |
"metadata": {
|
|
|
|
| 222 |
"language": "python",
|
| 223 |
"name": "python3"
|
| 224 |
},
|
| 225 |
+
"language_info": {
|
| 226 |
+
"codemirror_mode": {
|
| 227 |
+
"name": "ipython",
|
| 228 |
+
"version": 3
|
| 229 |
+
},
|
| 230 |
+
"file_extension": ".py",
|
| 231 |
+
"mimetype": "text/x-python",
|
| 232 |
+
"name": "python",
|
| 233 |
+
"nbconvert_exporter": "python",
|
| 234 |
+
"pygments_lexer": "ipython3",
|
| 235 |
+
"version": "3.6.8"
|
| 236 |
+
},
|
| 237 |
"orig_nbformat": 4
|
| 238 |
},
|
| 239 |
"nbformat": 4,
|