Update README.md
Browse files
README.md
CHANGED
|
@@ -7,4 +7,67 @@ base_model:
|
|
| 7 |
pipeline_tag: text-to-speech
|
| 8 |
tags:
|
| 9 |
- tts
|
| 10 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pipeline_tag: text-to-speech
|
| 8 |
tags:
|
| 9 |
- tts
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
## Usage
|
| 13 |
+
Install Libraries
|
| 14 |
+
```bash
|
| 15 |
+
torch
|
| 16 |
+
soundfile
|
| 17 |
+
transformers
|
| 18 |
+
datasets>=3.5.0,<4.0.0
|
| 19 |
+
numpy==1.26.4
|
| 20 |
+
sentencepiece>=0.2.0
|
| 21 |
+
```
|
| 22 |
+
Using below Python script fro Inference
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
import torch
|
| 26 |
+
import soundfile as sf
|
| 27 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 28 |
+
from datasets import load_dataset
|
| 29 |
+
import numpy as np
|
| 30 |
+
import json
|
| 31 |
+
import os
|
| 32 |
+
|
| 33 |
+
# Load processor, model, and vocoder
|
| 34 |
+
processor = SpeechT5Processor.from_pretrained("danhtran2mind/Viet-SpeechT5-TTS-finetuning")
|
| 35 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("danhtran2mind/Viet-SpeechT5-TTS-finetuning")
|
| 36 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 37 |
+
|
| 38 |
+
def generate_speech(text, voice, output_path="tests/test_output/tts_output.wav"):
|
| 39 |
+
print(f"Generating speech for text: {text}, voice: {voice}, output: {output_path}")
|
| 40 |
+
if not text or not voice:
|
| 41 |
+
return None, "Please provide both text and voice selection."
|
| 42 |
+
|
| 43 |
+
speaker_dict = {"male": 2000, "female": 7000}
|
| 44 |
+
try:
|
| 45 |
+
speaker_id = speaker_dict[voice.lower()]
|
| 46 |
+
speaker_embedding = torch.tensor(embeddings_dataset[speaker_id]["xvector"]).unsqueeze(0)
|
| 47 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 48 |
+
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
speech = model.generate_speech(
|
| 51 |
+
inputs["input_ids"],
|
| 52 |
+
speaker_embeddings=speaker_embedding,
|
| 53 |
+
vocoder=vocoder,
|
| 54 |
+
attention_mask=inputs.get("attention_mask")
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
sf.write(output_path, speech.numpy(), samplerate=16000)
|
| 58 |
+
print(f"Audio saved to {output_path}")
|
| 59 |
+
return output_path, None
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error generating speech: {str(e)}")
|
| 62 |
+
return None, f"Error generating speech: {str(e)}"
|
| 63 |
+
|
| 64 |
+
text = "<input_text>"
|
| 65 |
+
voice = "Female" # choose "Male" or "Female"
|
| 66 |
+
generate_speech(text, voice, output_path="tests/test_output/tts_output.wav")
|
| 67 |
+
```
|
| 68 |
+
Show the Output TTS Audio
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
from IPython.display import Audio
|
| 72 |
+
Audio("tests/test_output/tts_output.wav")
|
| 73 |
+
```
|