Jacobellis Dan (dgj335)
commited on
Commit
·
3fb5bd1
1
Parent(s):
bd387fd
usage example
Browse files- README.ipynb +0 -0
- README.md +135 -0
- README_files/README_14_0.jpg +3 -0
- README_files/README_14_0.png +3 -0
- README_files/README_6_0.jpg +3 -0
- README_files/README_6_0.png +3 -0
README.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
README.md
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Lightweight Learned Image Compression (LLIC)
|
| 2 |
+
|
| 3 |
+
## Installation
|
| 4 |
+
|
| 5 |
+
1. Follow the installation instructions for [torch](https://pytorch.org/get-started/locally/) and [compressai](https://interdigitalinc.github.io/CompressAI/installation.html)
|
| 6 |
+
2. Install LLIC via pip: `pip install LLIC`
|
| 7 |
+
|
| 8 |
+
## Pre-trained checkpoints
|
| 9 |
+
|
| 10 |
+
An imagenet-trained checkpoint for RGB images is available on huggingface: [LLIC_rgb_v0.0.1.pth](https://huggingface.co/danjacobellis/LLIC/resolve/main/LLIC_rgb_v0.0.1.pth)
|
| 11 |
+
|
| 12 |
+
[Request access to other checkpoints (grayscale, hyperspectral, microscopy, etc)](mailto:[email protected])
|
| 13 |
+
|
| 14 |
+
## Usage example
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
import torch
|
| 19 |
+
import zlib
|
| 20 |
+
import numpy as np
|
| 21 |
+
import compressai
|
| 22 |
+
from io import BytesIO
|
| 23 |
+
from IPython.display import display
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from LLIC import LLIC
|
| 26 |
+
from torchvision.transforms import ToPILImage, PILToTensor
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
Load the model
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
checkpoint = torch.load("LLIC_rgb_v0.0.1.pth",map_location="cpu")
|
| 34 |
+
codec = LLIC.RateDistortionAutoEncoder()
|
| 35 |
+
codec.load_state_dict(checkpoint['model_state_dict'])
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
<All keys matched successfully>
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
Download example image
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
!wget https://r0k.us/graphics/kodak/kodak/kodim05.png
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
original_image = Image.open("kodim05.png")
|
| 55 |
+
original_image
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+

|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
The analysis and synthesis transforms expect dimensions to be multiples of of 16. Zero padding can be applied otherwise.
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
def pad(x, p=2**5):
|
| 72 |
+
h, w = x.size(2), x.size(3)
|
| 73 |
+
pad, _ = compressai.ops.compute_padding(h, w, min_div=p)
|
| 74 |
+
return torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 75 |
+
|
| 76 |
+
def preprocess(pil_image):
|
| 77 |
+
tensor = PILToTensor()(pil_image)
|
| 78 |
+
tensor = tensor.unsqueeze(0)
|
| 79 |
+
tensor = tensor.to(torch.float)
|
| 80 |
+
tensor = tensor/255
|
| 81 |
+
tensor = tensor - 0.5
|
| 82 |
+
return pad(tensor)
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
Compress the image and save file
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
padded_image = preprocess(original_image)
|
| 90 |
+
original_size = padded_image.shape
|
| 91 |
+
compressed_image, compressed_shape = LLIC.compress(padded_image, codec)
|
| 92 |
+
with open("kodim05.llic", 'wb') as f:
|
| 93 |
+
f.write(compressed_image)
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
Decompress and view the image
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
def crop(x, size):
|
| 101 |
+
H, W = x.size(2), x.size(3)
|
| 102 |
+
h, w = size
|
| 103 |
+
_, unpad = compressai.ops.compute_padding(h, w, out_h=H, out_w=W)
|
| 104 |
+
return torch.nn.functional.pad(x, unpad, mode="constant", value=0)
|
| 105 |
+
|
| 106 |
+
def postprocess(tensor):
|
| 107 |
+
tensor = tensor[0] + 0.5
|
| 108 |
+
tensor = 255*tensor
|
| 109 |
+
tensor = tensor.clamp(0,255)
|
| 110 |
+
tensor = tensor.to(torch.uint8)
|
| 111 |
+
pil_image = ToPILImage()(tensor)
|
| 112 |
+
return pil_image
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
with open("kodim05.llic", 'rb') as f:
|
| 118 |
+
compressed_image = f.read()
|
| 119 |
+
tensor = LLIC.decompress(compressed_image, compressed_shape, codec)
|
| 120 |
+
recovered_image = postprocess(crop(tensor, (512,768)))
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
recovered_image
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+

|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
README_files/README_14_0.jpg
ADDED
|
Git LFS Details
|
README_files/README_14_0.png
ADDED
|
Git LFS Details
|
README_files/README_6_0.jpg
ADDED
|
Git LFS Details
|
README_files/README_6_0.png
ADDED
|
Git LFS Details
|