Upload lora-scripts/sd-scripts/networks/lora_interrogator.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/networks/lora_interrogator.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
from library import model_util
|
| 5 |
+
import library.train_util as train_util
|
| 6 |
+
import argparse
|
| 7 |
+
from transformers import CLIPTokenizer
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from library.device_utils import init_ipex, get_preferred_device
|
| 11 |
+
init_ipex()
|
| 12 |
+
|
| 13 |
+
import library.model_util as model_util
|
| 14 |
+
import lora
|
| 15 |
+
from library.utils import setup_logging
|
| 16 |
+
setup_logging()
|
| 17 |
+
import logging
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
|
| 20 |
+
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
|
| 21 |
+
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2" # ここからtokenizerだけ使う
|
| 22 |
+
|
| 23 |
+
DEVICE = get_preferred_device()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def interrogate(args):
|
| 27 |
+
weights_dtype = torch.float16
|
| 28 |
+
|
| 29 |
+
# いろいろ準備する
|
| 30 |
+
logger.info(f"loading SD model: {args.sd_model}")
|
| 31 |
+
args.pretrained_model_name_or_path = args.sd_model
|
| 32 |
+
args.vae = None
|
| 33 |
+
text_encoder, vae, unet, _ = train_util._load_target_model(args,weights_dtype, DEVICE)
|
| 34 |
+
|
| 35 |
+
logger.info(f"loading LoRA: {args.model}")
|
| 36 |
+
network, weights_sd = lora.create_network_from_weights(1.0, args.model, vae, text_encoder, unet)
|
| 37 |
+
|
| 38 |
+
# text encoder向けの重みがあるかチェックする:本当はlora側でやるのがいい
|
| 39 |
+
has_te_weight = False
|
| 40 |
+
for key in weights_sd.keys():
|
| 41 |
+
if 'lora_te' in key:
|
| 42 |
+
has_te_weight = True
|
| 43 |
+
break
|
| 44 |
+
if not has_te_weight:
|
| 45 |
+
logger.error("This LoRA does not have modules for Text Encoder, cannot interrogate / このLoRAはText Encoder向けのモジュールがないため調査できません")
|
| 46 |
+
return
|
| 47 |
+
del vae
|
| 48 |
+
|
| 49 |
+
logger.info("loading tokenizer")
|
| 50 |
+
if args.v2:
|
| 51 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(V2_STABLE_DIFFUSION_PATH, subfolder="tokenizer")
|
| 52 |
+
else:
|
| 53 |
+
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(TOKENIZER_PATH) # , model_max_length=max_token_length + 2)
|
| 54 |
+
|
| 55 |
+
text_encoder.to(DEVICE, dtype=weights_dtype)
|
| 56 |
+
text_encoder.eval()
|
| 57 |
+
unet.to(DEVICE, dtype=weights_dtype)
|
| 58 |
+
unet.eval() # U-Netは呼び出さないので不要だけど
|
| 59 |
+
|
| 60 |
+
# トークンをひとつひとつ当たっていく
|
| 61 |
+
token_id_start = 0
|
| 62 |
+
token_id_end = max(tokenizer.all_special_ids)
|
| 63 |
+
logger.info(f"interrogate tokens are: {token_id_start} to {token_id_end}")
|
| 64 |
+
|
| 65 |
+
def get_all_embeddings(text_encoder):
|
| 66 |
+
embs = []
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
for token_id in tqdm(range(token_id_start, token_id_end + 1, args.batch_size)):
|
| 69 |
+
batch = []
|
| 70 |
+
for tid in range(token_id, min(token_id_end + 1, token_id + args.batch_size)):
|
| 71 |
+
tokens = [tokenizer.bos_token_id, tid, tokenizer.eos_token_id]
|
| 72 |
+
# tokens = [tid] # こちらは結果がいまひとつ
|
| 73 |
+
batch.append(tokens)
|
| 74 |
+
|
| 75 |
+
# batch_embs = text_encoder(torch.tensor(batch).to(DEVICE))[0].to("cpu") # bos/eosも含めたほうが差が出るようだ [:, 1]
|
| 76 |
+
# clip skip対応
|
| 77 |
+
batch = torch.tensor(batch).to(DEVICE)
|
| 78 |
+
if args.clip_skip is None:
|
| 79 |
+
encoder_hidden_states = text_encoder(batch)[0]
|
| 80 |
+
else:
|
| 81 |
+
enc_out = text_encoder(batch, output_hidden_states=True, return_dict=True)
|
| 82 |
+
encoder_hidden_states = enc_out['hidden_states'][-args.clip_skip]
|
| 83 |
+
encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)
|
| 84 |
+
encoder_hidden_states = encoder_hidden_states.to("cpu")
|
| 85 |
+
|
| 86 |
+
embs.extend(encoder_hidden_states)
|
| 87 |
+
return torch.stack(embs)
|
| 88 |
+
|
| 89 |
+
logger.info("get original text encoder embeddings.")
|
| 90 |
+
orig_embs = get_all_embeddings(text_encoder)
|
| 91 |
+
|
| 92 |
+
network.apply_to(text_encoder, unet, True, len(network.unet_loras) > 0)
|
| 93 |
+
info = network.load_state_dict(weights_sd, strict=False)
|
| 94 |
+
logger.info(f"Loading LoRA weights: {info}")
|
| 95 |
+
|
| 96 |
+
network.to(DEVICE, dtype=weights_dtype)
|
| 97 |
+
network.eval()
|
| 98 |
+
|
| 99 |
+
del unet
|
| 100 |
+
|
| 101 |
+
logger.info("You can ignore warning messages start with '_IncompatibleKeys' (LoRA model does not have alpha because trained by older script) / '_IncompatibleKeys'の警告は無視して構いません(以前のスクリプトで学習されたLoRAモデルのためalphaの定義がありません)")
|
| 102 |
+
logger.info("get text encoder embeddings with lora.")
|
| 103 |
+
lora_embs = get_all_embeddings(text_encoder)
|
| 104 |
+
|
| 105 |
+
# 比べる:とりあえず単純に差分の絶対値で
|
| 106 |
+
logger.info("comparing...")
|
| 107 |
+
diffs = {}
|
| 108 |
+
for i, (orig_emb, lora_emb) in enumerate(zip(orig_embs, tqdm(lora_embs))):
|
| 109 |
+
diff = torch.mean(torch.abs(orig_emb - lora_emb))
|
| 110 |
+
# diff = torch.mean(torch.cosine_similarity(orig_emb, lora_emb, dim=1)) # うまく検出できない
|
| 111 |
+
diff = float(diff.detach().to('cpu').numpy())
|
| 112 |
+
diffs[token_id_start + i] = diff
|
| 113 |
+
|
| 114 |
+
diffs_sorted = sorted(diffs.items(), key=lambda x: -x[1])
|
| 115 |
+
|
| 116 |
+
# 結果を表示する
|
| 117 |
+
print("top 100:")
|
| 118 |
+
for i, (token, diff) in enumerate(diffs_sorted[:100]):
|
| 119 |
+
# if diff < 1e-6:
|
| 120 |
+
# break
|
| 121 |
+
string = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens([token]))
|
| 122 |
+
print(f"[{i:3d}]: {token:5d} {string:<20s}: {diff:.5f}")
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def setup_parser() -> argparse.ArgumentParser:
|
| 126 |
+
parser = argparse.ArgumentParser()
|
| 127 |
+
|
| 128 |
+
parser.add_argument("--v2", action='store_true',
|
| 129 |
+
help='load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む')
|
| 130 |
+
parser.add_argument("--sd_model", type=str, default=None,
|
| 131 |
+
help="Stable Diffusion model to load: ckpt or safetensors file / 読み込むSDのモデル、ckptまたはsafetensors")
|
| 132 |
+
parser.add_argument("--model", type=str, default=None,
|
| 133 |
+
help="LoRA model to interrogate: ckpt or safetensors file / 調査するLoRAモデル、ckptまたはsafetensors")
|
| 134 |
+
parser.add_argument("--batch_size", type=int, default=16,
|
| 135 |
+
help="batch size for processing with Text Encoder / Text Encoderで処理するときのバッチサイズ")
|
| 136 |
+
parser.add_argument("--clip_skip", type=int, default=None,
|
| 137 |
+
help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)")
|
| 138 |
+
|
| 139 |
+
return parser
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
if __name__ == '__main__':
|
| 143 |
+
parser = setup_parser()
|
| 144 |
+
|
| 145 |
+
args = parser.parse_args()
|
| 146 |
+
interrogate(args)
|