Datasets:
Add config.yaml for PVTV2 model
Browse files
pretrained_models/.hydra/config.yaml
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
task_name: predict
|
| 2 |
+
tags:
|
| 3 |
+
- dev
|
| 4 |
+
train: true
|
| 5 |
+
test: true
|
| 6 |
+
ckpt_path: null
|
| 7 |
+
seed: 42
|
| 8 |
+
float32_matmul_precision: high
|
| 9 |
+
clean_pred: true
|
| 10 |
+
data:
|
| 11 |
+
_target_: src.data.canopy_datamodule.GEODataModule
|
| 12 |
+
geometry_path: ${paths.data_dir}canopy_height/geometries.geojson
|
| 13 |
+
imageside: 336
|
| 14 |
+
imagesize: 224
|
| 15 |
+
mean:
|
| 16 |
+
- 124
|
| 17 |
+
- 124
|
| 18 |
+
- 124
|
| 19 |
+
- 124
|
| 20 |
+
std:
|
| 21 |
+
- 124
|
| 22 |
+
- 124
|
| 23 |
+
- 124
|
| 24 |
+
- 124
|
| 25 |
+
mean_type: global
|
| 26 |
+
iinter: 1
|
| 27 |
+
batch_size: 64
|
| 28 |
+
pin_memory: true
|
| 29 |
+
num_workers: 0
|
| 30 |
+
sample_multiplier: 1
|
| 31 |
+
tsize_base: null
|
| 32 |
+
tsize_enum_sizes:
|
| 33 |
+
- 1
|
| 34 |
+
tsize_enum_probs:
|
| 35 |
+
- 1
|
| 36 |
+
tsize_range_frac: 0.5
|
| 37 |
+
tsize_range_sizes:
|
| 38 |
+
- 0.5
|
| 39 |
+
- 2
|
| 40 |
+
trot_prob: 0.5
|
| 41 |
+
trot_angle: 90
|
| 42 |
+
min_overlap: 0.2
|
| 43 |
+
test_overlap: 0.5
|
| 44 |
+
model:
|
| 45 |
+
_target_: src.models.regression_module.RegressionModule
|
| 46 |
+
optimizer:
|
| 47 |
+
_target_: torch.optim.Adam
|
| 48 |
+
_partial_: true
|
| 49 |
+
lr: 0.001
|
| 50 |
+
weight_decay: 0.0
|
| 51 |
+
scheduler:
|
| 52 |
+
_target_: torch.optim.lr_scheduler.ReduceLROnPlateau
|
| 53 |
+
_partial_: true
|
| 54 |
+
mode: min
|
| 55 |
+
factor: 0.5
|
| 56 |
+
patience: 1
|
| 57 |
+
threshold: 0.01
|
| 58 |
+
threshold_mode: rel
|
| 59 |
+
metric_monitored: val/RMSE
|
| 60 |
+
warmup_scheduler:
|
| 61 |
+
_target_: src.models.components.utils.WarmupScheduler
|
| 62 |
+
_partial_: true
|
| 63 |
+
min_lr: 1.0e-05
|
| 64 |
+
max_lr: ${model.optimizer.lr}
|
| 65 |
+
fract: 0.04
|
| 66 |
+
net:
|
| 67 |
+
_target_: src.models.components.timmNet.timmNet
|
| 68 |
+
img_size: ${data.imagesize}
|
| 69 |
+
num_channels: 4
|
| 70 |
+
num_classes: 1
|
| 71 |
+
backbone: pvt_v2_b3.in1k
|
| 72 |
+
pretrained: false
|
| 73 |
+
pretrained_path: datasets/Models/pvt_v2_b3.in1k.bin
|
| 74 |
+
segmentation_head:
|
| 75 |
+
_partial_: true
|
| 76 |
+
_target_: src.models.components.utils.SimpleSegmentationHead
|
| 77 |
+
decoder_stride: 32
|
| 78 |
+
save_eval_only: true
|
| 79 |
+
save_freq: 1000
|
| 80 |
+
test_overlap: ${data.test_overlap}
|
| 81 |
+
compile: false
|
| 82 |
+
num_classes: ${model.net.num_classes}
|
| 83 |
+
aux_loss_factor: 0.0
|
| 84 |
+
loss: l1
|
| 85 |
+
activation: none
|
| 86 |
+
callbacks:
|
| 87 |
+
model_checkpoint:
|
| 88 |
+
_target_: lightning.pytorch.callbacks.ModelCheckpoint
|
| 89 |
+
dirpath: ${paths.output_dir}/checkpoints
|
| 90 |
+
filename: epoch_{epoch:03d}
|
| 91 |
+
monitor: val/RMSE
|
| 92 |
+
verbose: false
|
| 93 |
+
save_last: true
|
| 94 |
+
save_top_k: 1
|
| 95 |
+
mode: min
|
| 96 |
+
auto_insert_metric_name: false
|
| 97 |
+
save_weights_only: false
|
| 98 |
+
every_n_train_steps: null
|
| 99 |
+
train_time_interval: null
|
| 100 |
+
every_n_epochs: null
|
| 101 |
+
save_on_train_epoch_end: null
|
| 102 |
+
early_stopping:
|
| 103 |
+
_target_: lightning.pytorch.callbacks.EarlyStopping
|
| 104 |
+
monitor: ${callbacks.model_checkpoint.monitor}
|
| 105 |
+
min_delta: 0.0
|
| 106 |
+
patience: 3
|
| 107 |
+
verbose: false
|
| 108 |
+
mode: min
|
| 109 |
+
strict: true
|
| 110 |
+
check_finite: true
|
| 111 |
+
stopping_threshold: null
|
| 112 |
+
divergence_threshold: null
|
| 113 |
+
check_on_train_epoch_end: null
|
| 114 |
+
model_summary:
|
| 115 |
+
_target_: lightning.pytorch.callbacks.RichModelSummary
|
| 116 |
+
max_depth: -1
|
| 117 |
+
rich_progress_bar:
|
| 118 |
+
_target_: lightning.pytorch.callbacks.RichProgressBar
|
| 119 |
+
learning_rate_monitor:
|
| 120 |
+
_target_: lightning.pytorch.callbacks.LearningRateMonitor
|
| 121 |
+
logging_interval: step
|
| 122 |
+
logger: null
|
| 123 |
+
trainer:
|
| 124 |
+
_target_: lightning.pytorch.trainer.Trainer
|
| 125 |
+
default_root_dir: ${paths.output_dir}
|
| 126 |
+
min_epochs: 10
|
| 127 |
+
max_epochs: 25
|
| 128 |
+
accelerator: gpu
|
| 129 |
+
devices: 1
|
| 130 |
+
reload_dataloaders_every_n_epochs: 1
|
| 131 |
+
check_val_every_n_epoch: 1
|
| 132 |
+
log_every_n_steps: 20
|
| 133 |
+
deterministic: false
|
| 134 |
+
paths:
|
| 135 |
+
root_dir: ${oc.env:PROJECT_ROOT}
|
| 136 |
+
data_dir: ${paths.root_dir}/datasets/
|
| 137 |
+
log_dir: ${paths.root_dir}/logs/
|
| 138 |
+
output_dir: ${hydra:runtime.output_dir}
|
| 139 |
+
work_dir: ${hydra:runtime.cwd}
|
| 140 |
+
extras:
|
| 141 |
+
ignore_warnings: false
|
| 142 |
+
enforce_tags: true
|
| 143 |
+
print_config: true
|