AbstractPhil commited on
Commit
e53b3c9
·
verified ·
1 Parent(s): 0458a04

Add dataset README

Browse files
Files changed (1) hide show
  1. README.md +113 -31
README.md CHANGED
@@ -1,33 +1,115 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: name
5
- dtype: string
6
- - name: genre
7
- list: string
8
- - name: chroma
9
- dtype:
10
- array2_d:
11
- shape:
12
- - 128
13
- - 12
14
- dtype: float32
15
- - name: text
16
- dtype: string
17
- splits:
18
- - name: train
19
- num_bytes: 28678416.937062938
20
- num_examples: 4247
21
- - name: test
22
- num_bytes: 3187241.062937063
23
- num_examples: 472
24
- download_size: 9048600
25
- dataset_size: 31865658.0
26
- configs:
27
- - config_name: default
28
- data_files:
29
- - split: train
30
- path: data/train-*
31
- - split: test
32
- path: data/test-*
33
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ task_categories:
5
+ - text-to-audio
6
+ - audio-to-audio
7
+ tags:
8
+ - music
9
+ - midi
10
+ - chroma
11
+ - music-generation
12
+ - geometric-deep-learning
13
+ size_categories:
14
+ - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+
17
+ # MIDI Chroma Dataset
18
+
19
+ Pre-processed version of [foldl/midi](https://huggingface.co/datasets/foldl/midi) with chroma features extracted directly from MIDI note events.
20
+
21
+ ## Dataset Description
22
+
23
+ This dataset contains **4719 songs** with pre-computed chroma features for efficient music generation training.
24
+
25
+ ### Features
26
+
27
+ - **name**: Song title (string)
28
+ - **genre**: List of genres (list of strings)
29
+ - **chroma**: Pre-computed chroma features `[128, 12]` (float32 array)
30
+ - 12 pitch classes (C, C#, D, D#, E, F, F#, G, G#, A, A#, B)
31
+ - 128 time steps
32
+ - Values normalized to sum to 1.0 per timestep
33
+ - **text**: Text description for conditioning (string)
34
+
35
+ ### Extraction Method
36
+
37
+ Chroma features are extracted **directly from MIDI note events** without audio synthesis:
38
+ - Notes are mapped to their pitch class (0-11)
39
+ - Velocity is used for intensity weighting
40
+ - Temporal resolution: ~10 FPS
41
+ - Much faster than audio-based extraction
42
+
43
+ ### Usage
44
+ ```python
45
+ from datasets import load_dataset
46
+ import torch
47
+
48
+ # Load dataset
49
+ dataset = load_dataset("AbstractPhil/foldl-midi")
50
+
51
+ # Access samples
52
+ sample = dataset['train'][0]
53
+ chroma = torch.tensor(sample['chroma']) # [128, 12]
54
+ text = sample['text'] # "rock, pop: Genesis - The Light Dies Down"
55
+
56
+ print(f"Text: {text}")
57
+ print(f"Chroma shape: {chroma.shape}")
58
+ ```
59
+
60
+ ### Training ChromaLyra
61
+
62
+ This dataset is designed for training **ChromaLyra**, a geometric VAE for music generation:
63
+ ```python
64
+ from geovocab2.train.model.chroma.chroma_lyra import ChromaLyra, ChromaLyraConfig
65
+
66
+ config = ChromaLyraConfig(
67
+ n_chroma=12,
68
+ seq_len=128,
69
+ latent_dim=256,
70
+ hidden_dim=384
71
+ )
72
+
73
+ model = ChromaLyra(config)
74
+ # Train with text conditioning...
75
+ ```
76
+
77
+ ## Dataset Creation
78
+
79
+ Created by extracting chroma from valid MIDI files in foldl/midi dataset:
80
+ - Filtered songs: 1s - 3min duration
81
+ - Skipped empty/drum-only tracks
82
+ - Original: ~20K MIDI files → This dataset: ~4719 valid samples
83
+
84
+ ## Citation
85
+
86
+ Original dataset:
87
+ ```bibtex
88
+ @misc{foldl-midi,
89
+ author = {foldl},
90
+ title = {MIDI Dataset},
91
+ year = {2023},
92
+ publisher = {Hugging Face},
93
+ url = {https://huggingface.co/datasets/foldl/midi}
94
+ }
95
+ ```
96
+
97
+ Geometric approach:
98
+ ```bibtex
99
+ @misc{abstract-phil-geovocab,
100
+ author = {AbstractPhil},
101
+ title = {GeoVocab: Geometric Deep Learning for Music Generation},
102
+ year = {2025},
103
+ url = {https://github.com/AbstractPhil/geovocab2}
104
+ }
105
+ ```
106
+
107
+ ## License
108
+
109
+ Same as original foldl/midi dataset.
110
+
111
+ ## Acknowledgments
112
+
113
+ - Original MIDI dataset: foldl
114
+ - Chroma extraction: pretty_midi library
115
+ - Geometric VAE architecture: AbstractPhil/GeoVocab2