""" EIT Dataset Loader - Direct Python Class (No HuggingFace script loading) This loader provides direct access to the EIT dataset stored in HDF5 format. Can be used standalone or wrapped for HuggingFace datasets compatibility. """ import h5py import numpy as np from pathlib import Path from typing import Dict, List, Tuple, Optional import torch from torch.utils.data import Dataset class EITDataset(Dataset): """ PyTorch Dataset for EIT (Electrical Impedance Tomography) data. Args: data_dir: Base directory containing the dataset subset: Which dataset to load ("CirclesOnly" or "FourObjects") split: Which split to load ("train", "val", or "test") image_resolution: Image resolution ("32_log", "64_log", "128_log", or "256") load_to_memory: If True, load all data to RAM (faster but memory intensive) """ def __init__( self, data_dir: str, subset: str = "CirclesOnly", split: str = "train", image_resolution: str = "128_log", load_to_memory: bool = False ): self.data_dir = Path(data_dir) self.subset = subset self.split = split self.image_resolution = image_resolution self.load_to_memory = load_to_memory # Paths self.subset_path = self.data_dir / subset self.h5_path = self.subset_path / "dataset.h5" # Map split name to file name split_map = {"train": "train.txt", "val": "val.txt", "test": "test.txt"} self.split_file = self.subset_path / "parameters" / split_map[split] # Load split indices self._load_split_indices() # Load data to memory if requested if self.load_to_memory: self._load_to_memory() else: self.cached_data = None def _load_split_indices(self): """Load the indices for this split.""" with open(self.split_file, 'r') as f: self.indices = [int(line.strip()) for line in f if line.strip()] def _load_to_memory(self): """Load all data for this split into memory.""" print(f"Loading {len(self.indices)} samples to memory...") self.cached_data = [] with h5py.File(self.h5_path, "r") as h5_file: voltage_data = h5_file["volt"]["16"] image_data = h5_file["image"][self.image_resolution] # Determine graph key graph_key = self.image_resolution if self.image_resolution != "256" else "128_log" has_graph = graph_key in h5_file["graph"] for sample_idx in self.indices: voltage = voltage_data[:, sample_idx].astype(np.float32) image = image_data[:, :, sample_idx].astype(np.float32) sample = { 'voltage_measurements': voltage, 'conductivity_map': image, 'sample_id': sample_idx } if has_graph: graph = h5_file["graph"][graph_key][:, sample_idx].astype(np.float32) sample['graph_representation'] = graph self.cached_data.append(sample) print("Data loaded to memory!") def __len__(self) -> int: return len(self.indices) def __getitem__(self, idx: int) -> Dict[str, np.ndarray]: """Get a single sample.""" if self.cached_data is not None: # Return from cached data return self.cached_data[idx] # Read from HDF5 file on-the-fly sample_idx = self.indices[idx] with h5py.File(self.h5_path, "r") as h5_file: voltage = h5_file["volt"]["16"][:, sample_idx].astype(np.float32) image = h5_file["image"][self.image_resolution][:, :, sample_idx].astype(np.float32) sample = { 'voltage_measurements': voltage, 'conductivity_map': image, 'sample_id': sample_idx } # Add graph representation if available graph_key = self.image_resolution if self.image_resolution != "256" else "128_log" if graph_key in h5_file["graph"]: graph = h5_file["graph"][graph_key][:, sample_idx].astype(np.float32) sample['graph_representation'] = graph return sample def get_image_shape(self) -> Tuple[int, int]: """Get the shape of conductivity maps.""" resolution_map = { "32_log": (32, 32), "64_log": (64, 64), "128_log": (128, 128), "256": (256, 256) } return resolution_map.get(self.image_resolution, (128, 128)) def get_statistics(self) -> Dict: """Calculate dataset statistics.""" print("Calculating statistics...") voltage_sum = np.zeros(256, dtype=np.float64) voltage_sq_sum = np.zeros(256, dtype=np.float64) image_sum = 0.0 image_sq_sum = 0.0 n_samples = len(self) with h5py.File(self.h5_path, "r") as h5_file: voltage_data = h5_file["volt"]["16"] image_data = h5_file["image"][self.image_resolution] for sample_idx in self.indices: voltage = voltage_data[:, sample_idx] image = image_data[:, :, sample_idx] voltage_sum += voltage voltage_sq_sum += voltage ** 2 image_sum += np.sum(image) image_sq_sum += np.sum(image ** 2) n_pixels = n_samples * self.get_image_shape()[0] * self.get_image_shape()[1] stats = { 'voltage_mean': voltage_sum / n_samples, 'voltage_std': np.sqrt(voltage_sq_sum / n_samples - (voltage_sum / n_samples) ** 2), 'image_mean': image_sum / n_pixels, 'image_std': np.sqrt(image_sq_sum / n_pixels - (image_sum / n_pixels) ** 2), 'n_samples': n_samples } return stats class EITDataModule: """ Convenience class to manage all splits of the EIT dataset. Args: data_dir: Base directory containing the dataset subset: Which dataset to load ("CirclesOnly" or "FourObjects") image_resolution: Image resolution ("32_log", "64_log", "128_log", or "256") batch_size: Batch size for DataLoaders num_workers: Number of workers for DataLoaders load_to_memory: If True, load all data to RAM """ def __init__( self, data_dir: str, subset: str = "CirclesOnly", image_resolution: str = "128_log", batch_size: int = 32, num_workers: int = 4, load_to_memory: bool = False ): self.data_dir = data_dir self.subset = subset self.image_resolution = image_resolution self.batch_size = batch_size self.num_workers = num_workers self.load_to_memory = load_to_memory # Create datasets self.train_dataset = EITDataset( data_dir, subset, "train", image_resolution, load_to_memory ) self.val_dataset = EITDataset( data_dir, subset, "val", image_resolution, load_to_memory ) self.test_dataset = EITDataset( data_dir, subset, "test", image_resolution, load_to_memory ) def train_dataloader(self, **kwargs): """Get training DataLoader.""" from torch.utils.data import DataLoader return DataLoader( self.train_dataset, batch_size=kwargs.get('batch_size', self.batch_size), shuffle=True, num_workers=kwargs.get('num_workers', self.num_workers), pin_memory=True ) def val_dataloader(self, **kwargs): """Get validation DataLoader.""" from torch.utils.data import DataLoader return DataLoader( self.val_dataset, batch_size=kwargs.get('batch_size', self.batch_size), shuffle=False, num_workers=kwargs.get('num_workers', self.num_workers), pin_memory=True ) def test_dataloader(self, **kwargs): """Get test DataLoader.""" from torch.utils.data import DataLoader return DataLoader( self.test_dataset, batch_size=kwargs.get('batch_size', self.batch_size), shuffle=False, num_workers=kwargs.get('num_workers', self.num_workers), pin_memory=True ) def get_statistics(self): """Get statistics for all splits.""" return { 'train': self.train_dataset.get_statistics(), 'val': self.val_dataset.get_statistics(), 'test': self.test_dataset.get_statistics() } # Example usage if __name__ == "__main__": print("="*60) print("EIT Dataset Loader - Example Usage") print("="*60) # Create dataset data_dir = "https://huggingface.co/datasets/AymanAmeen/SimEIT-dataset" print("\n1. Creating datasets...") train_dataset = EITDataset( data_dir=data_dir, subset="CirclesOnly", split="train", image_resolution="128_log", load_to_memory=False ) print(f" Train dataset size: {len(train_dataset)}") print(f" Image shape: {train_dataset.get_image_shape()}") # Get a sample print("\n2. Loading a sample...") sample = train_dataset[0] print(f" Keys: {list(sample.keys())}") print(f" Voltage measurements shape: {sample['voltage_measurements'].shape}") print(f" Conductivity map shape: {sample['conductivity_map'].shape}") if 'graph_representation' in sample: print(f" Graph representation shape: {sample['graph_representation'].shape}") print(f" Sample ID: {sample['sample_id']}") # Create DataModule print("\n3. Creating EITDataModule...") data_module = EITDataModule( data_dir=data_dir, subset="CirclesOnly", image_resolution="128_log", batch_size=4, num_workers=0 # Set to 0 for testing, increase for training ) print(f" Train samples: {len(data_module.train_dataset)}") print(f" Val samples: {len(data_module.val_dataset)}") print(f" Test samples: {len(data_module.test_dataset)}") # Create DataLoader print("\n4. Creating DataLoader and getting a batch...") train_loader = data_module.train_dataloader() batch = next(iter(train_loader)) print(f" Batch voltage shape: {batch['voltage_measurements'].shape}") print(f" Batch image shape: {batch['conductivity_map'].shape}") print(f" Batch IDs: {batch['sample_id'].tolist()}") # Test different configurations print("\n5. Testing different resolutions...") for resolution in ["32_log", "64_log", "128_log", "256"]: try: ds = EITDataset(data_dir, "CirclesOnly", "train", resolution) print(f" {resolution}: {len(ds)} samples, shape: {ds.get_image_shape()}") except Exception as e: print(f" {resolution}: Error - {e}") print("\n" + "="*60) print("All tests completed successfully!") print("="*60)