Datasets:
Commit
·
08143b8
1
Parent(s):
94efbe5
Fix loading script
Browse files- ascend.py → ASCEND.py +27 -11
- ASCEND.py.lock +0 -0
- dataset_infos.json +1 -0
ascend.py → ASCEND.py
RENAMED
|
@@ -14,11 +14,11 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
""" Common Voice Dataset"""
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
-
import os
|
| 19 |
|
| 20 |
import datasets
|
| 21 |
-
|
| 22 |
import pandas as pd
|
| 23 |
|
| 24 |
|
|
@@ -39,6 +39,15 @@ ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resourc
|
|
| 39 |
|
| 40 |
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
class ASCENDConfig(datasets.BuilderConfig):
|
| 44 |
"""BuilderConfig for ASCEND."""
|
|
@@ -75,6 +84,7 @@ class ASCEND(datasets.GeneratorBasedBuilder):
|
|
| 75 |
def _info(self):
|
| 76 |
features = datasets.Features(
|
| 77 |
{
|
|
|
|
| 78 |
"path": datasets.Value("string"),
|
| 79 |
"audio": datasets.Audio(sampling_rate=16_000),
|
| 80 |
"transcription": datasets.Value("string"),
|
|
@@ -95,37 +105,43 @@ class ASCEND(datasets.GeneratorBasedBuilder):
|
|
| 95 |
)
|
| 96 |
|
| 97 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
| 98 |
return [
|
| 99 |
datasets.SplitGenerator(
|
| 100 |
name=datasets.Split.TRAIN,
|
| 101 |
gen_kwargs={
|
| 102 |
-
"metadata_path": "
|
| 103 |
-
"split": "train",
|
| 104 |
},
|
| 105 |
),
|
| 106 |
datasets.SplitGenerator(
|
| 107 |
name=datasets.Split.TEST,
|
| 108 |
gen_kwargs={
|
| 109 |
-
"metadata_path": "
|
| 110 |
-
"split": "test"
|
| 111 |
},
|
| 112 |
),
|
| 113 |
datasets.SplitGenerator(
|
| 114 |
name=datasets.Split.VALIDATION,
|
| 115 |
gen_kwargs={
|
| 116 |
-
"metadata_path": "
|
| 117 |
-
"split": "validation",
|
| 118 |
},
|
| 119 |
),
|
| 120 |
]
|
| 121 |
|
| 122 |
def _generate_examples(self, metadata_path):
|
|
|
|
| 123 |
metadata_df = pd.read_csv(metadata_path)
|
| 124 |
|
| 125 |
for index, row in metadata_df.iterrows():
|
| 126 |
example = {
|
| 127 |
-
"id": index,
|
| 128 |
-
"
|
| 129 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
}
|
| 131 |
yield index, example
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
""" Common Voice Dataset"""
|
| 16 |
|
| 17 |
+
from datasets import AutomaticSpeechRecognition
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
import datasets
|
| 21 |
+
import os
|
| 22 |
import pandas as pd
|
| 23 |
|
| 24 |
|
|
|
|
| 39 |
|
| 40 |
_HOMEPAGE = "https://huggingface.co/datasets/CAiRE/ASCEND"
|
| 41 |
|
| 42 |
+
DEFAULT_CONFIG_NAME = "train"
|
| 43 |
+
|
| 44 |
+
_URL = "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/"
|
| 45 |
+
_URLS = {
|
| 46 |
+
"train": _URL + "train_metadata.csv",
|
| 47 |
+
"test": _URL + "test_metadata.csv",
|
| 48 |
+
"validation": _URL + "validation_metadata.csv",
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
|
| 52 |
class ASCENDConfig(datasets.BuilderConfig):
|
| 53 |
"""BuilderConfig for ASCEND."""
|
|
|
|
| 84 |
def _info(self):
|
| 85 |
features = datasets.Features(
|
| 86 |
{
|
| 87 |
+
"id": datasets.Value("string"),
|
| 88 |
"path": datasets.Value("string"),
|
| 89 |
"audio": datasets.Audio(sampling_rate=16_000),
|
| 90 |
"transcription": datasets.Value("string"),
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
def _split_generators(self, dl_manager):
|
| 108 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 109 |
+
|
| 110 |
return [
|
| 111 |
datasets.SplitGenerator(
|
| 112 |
name=datasets.Split.TRAIN,
|
| 113 |
gen_kwargs={
|
| 114 |
+
"metadata_path": downloaded_files["train"]
|
|
|
|
| 115 |
},
|
| 116 |
),
|
| 117 |
datasets.SplitGenerator(
|
| 118 |
name=datasets.Split.TEST,
|
| 119 |
gen_kwargs={
|
| 120 |
+
"metadata_path": downloaded_files["test"]
|
|
|
|
| 121 |
},
|
| 122 |
),
|
| 123 |
datasets.SplitGenerator(
|
| 124 |
name=datasets.Split.VALIDATION,
|
| 125 |
gen_kwargs={
|
| 126 |
+
"metadata_path": downloaded_files["validation"]
|
|
|
|
| 127 |
},
|
| 128 |
),
|
| 129 |
]
|
| 130 |
|
| 131 |
def _generate_examples(self, metadata_path):
|
| 132 |
+
print(metadata_path)
|
| 133 |
metadata_df = pd.read_csv(metadata_path)
|
| 134 |
|
| 135 |
for index, row in metadata_df.iterrows():
|
| 136 |
example = {
|
| 137 |
+
"id": str(index).zfill(5),
|
| 138 |
+
"path": row["file_name"],
|
| 139 |
+
"audio": row["file_name"],
|
| 140 |
+
"transcription": row["transcription"],
|
| 141 |
+
"duration": row["duration"],
|
| 142 |
+
"language": row["language"],
|
| 143 |
+
"original_speaker_id": row["original_speaker_id"],
|
| 144 |
+
"session_id": row["session_id"],
|
| 145 |
+
"topic": row["topic"],
|
| 146 |
}
|
| 147 |
yield index, example
|
ASCEND.py.lock
ADDED
|
File without changes
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"train": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "train", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}, "validation": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "validation", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}, "test": {"description": "ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set.\n", "citation": "@inproceedings{lovenia2021ascend,\n title = {ASCEND: A Spontaneous Chinese-English Dataset for Code-switching in Multi-turn Conversation},\n author = {Lovenia, Holy and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Peng and Yan, Xu and Liu, Zihan and Frieske, Rita and Yu, Tiezheng and Dai, Wenliang and Barezi, Elham J and others},\n booktitle = {Proceedings of the International Conference on Language Resources and Evaluation, {LREC} 2022, 20-25 June 2022, Lu Palais du Pharo, France},\n publisher = {European Language Resources Association},\n year = {2022},\n pages = {}\n}\n", "homepage": "https://huggingface.co/datasets/CAiRE/ASCEND", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "path": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "decode": true, "id": null, "_type": "Audio"}, "transcription": {"dtype": "string", "id": null, "_type": "Value"}, "duration": {"dtype": "float32", "id": null, "_type": "Value"}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "original_speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "session_id": {"dtype": "int64", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "automatic-speech-recognition", "audio_column": "audio", "transcription_column": "transcription"}], "builder_name": "ascend", "config_name": "test", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1869212, "num_examples": 9869, "dataset_name": "ascend"}, "test": {"name": "test", "num_bytes": 233050, "num_examples": 1315, "dataset_name": "ascend"}, "validation": {"name": "validation", "num_bytes": 209322, "num_examples": 1130, "dataset_name": "ascend"}}, "download_checksums": {"https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/train_metadata.csv": {"num_bytes": 1081181, "checksum": "4cbdf90fe9bf53640bfc285e2539b468a6e412daeb17c36a1b5da478cd9f5b29"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/test_metadata.csv": {"num_bytes": 127658, "checksum": "15689bc1c1a0bc29b250f63221576392b627da9cc1d80e51bb1a422118b9732c"}, "https://huggingface.co/datasets/CAiRE/ASCEND/raw/main/validation_metadata.csv": {"num_bytes": 118552, "checksum": "6e53e362991b23ffa49ed991c6062a51d8f286747f341e566c897c02bee72459"}}, "download_size": 1327391, "post_processing_size": null, "dataset_size": 2311584, "size_in_bytes": 3638975}}
|