"""MMSearch-Plus dataset with transparent decryption.""" import base64 import hashlib import io import os from typing import Dict, Any, List import datasets from PIL import Image _CITATION = """\ @article{tao2025mmsearch, title={MMSearch-Plus: A Simple Yet Challenging Benchmark for Multimodal Browsing Agents}, author={Tao, Xijia and Teng, Yihua and Su, Xinxing and Fu, Xinyu and Wu, Jihao and Tao, Chaofan and Liu, Ziru and Bai, Haoli and Liu, Rui and Kong, Lingpeng}, journal={arXiv preprint arXiv:2508.21475}, year={2025} } """ _DESCRIPTION = """\ MMSearch-Plus is a challenging benchmark designed to test multimodal browsing agents' ability to perform genuine visual reasoning. Unlike existing benchmarks where many tasks can be solved with text-only approaches, MMSearch-Plus requires models to extract and use fine-grained visual cues through iterative image-text retrieval. """ _HOMEPAGE = "https://mmsearch-plus.github.io/" _LICENSE = "CC BY-NC 4.0" _URLS = { "train": [ "data-00000-of-00002.arrow", "data-00001-of-00002.arrow" ] } def derive_key(password: str, length: int) -> bytes: """Derive encryption key from password using SHA-256.""" hasher = hashlib.sha256() hasher.update(password.encode()) key = hasher.digest() return key * (length // len(key)) + key[: length % len(key)] def decrypt_image(ciphertext_b64: str, password: str) -> Image.Image: """Decrypt base64-encoded encrypted image bytes back to PIL Image.""" if not ciphertext_b64: return None try: encrypted = base64.b64decode(ciphertext_b64) key = derive_key(password, len(encrypted)) decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) # Convert bytes back to PIL Image img_buffer = io.BytesIO(decrypted) image = Image.open(img_buffer) return image except Exception: return None def decrypt_text(ciphertext_b64: str, password: str) -> str: """Decrypt base64-encoded ciphertext using XOR cipher with derived key.""" if not ciphertext_b64: return ciphertext_b64 try: encrypted = base64.b64decode(ciphertext_b64) key = derive_key(password, len(encrypted)) decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) return decrypted.decode('utf-8') except Exception: return ciphertext_b64 class MmsearchPlus(datasets.GeneratorBasedBuilder): """MMSearch-Plus dataset with transparent decryption.""" VERSION = datasets.Version("1.0.0") def _info(self): # Define features to handle the complete dataset schema features = datasets.Features({ "question": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), "num_images": datasets.Value("int64"), "arxiv_id": datasets.Value("string"), "video_url": datasets.Value("string"), "category": datasets.Value("string"), "difficulty": datasets.Value("string"), "subtask": datasets.Value("string"), # Image fields (not encrypted, kept as PIL Images) "img_1": datasets.Image(), "img_2": datasets.Image(), "img_3": datasets.Image(), "img_4": datasets.Image(), "img_5": datasets.Image(), # Additional fields that might exist in the dataset "choices": datasets.Sequence(datasets.Value("string")), "question_zh": datasets.Value("string"), "answer_zh": datasets.Sequence(datasets.Value("string")), "regex": datasets.Value("string"), "text_criteria": datasets.Value("string"), "original_filename": datasets.Value("string"), "screenshots_dir": datasets.Value("string"), "time_points": datasets.Sequence(datasets.Value("string")), "search_query": datasets.Value("string"), "question_type": datasets.Value("string"), "requires_image_understanding": datasets.Value("bool"), "source": datasets.Value("string"), "content_keywords": datasets.Value("string"), "reasoning": datasets.Value("string"), "processed_at": datasets.Value("string"), "model_used": datasets.Value("string"), "entry_index": datasets.Value("int64"), "original_image_paths": datasets.Sequence(datasets.Value("string")), "masked_image_paths": datasets.Sequence(datasets.Value("string")), "is_valid": datasets.Value("bool"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # Get canary from environment variable or kwargs canary = os.environ.get("MMSEARCH_PLUS") # Check if passed in the builder's initialization if hasattr(self, 'canary'): canary = self.canary if not canary: raise ValueError( "Canary string is required for decryption. Either set the MMSEARCH_PLUS " "environment variable or pass it via the dataset loading kwargs. " "Example: load_dataset('path/to/dataset', trust_remote_code=True) after setting " "os.environ['MMSEARCH_PLUS'] = 'your_canary_string'" ) # Download files urls = _URLS["train"] downloaded_files = dl_manager.download(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": downloaded_files, "canary": canary, }, ), ] def _generate_examples(self, filepaths, canary): """Generate examples with transparent decryption.""" key = 0 for filepath in filepaths: # Load the arrow file arrow_dataset = datasets.Dataset.from_file(filepath) for idx in range(len(arrow_dataset)): example = arrow_dataset[idx] # Decrypt text fields - matches encryption script fields text_fields = ['question', 'video_url', 'arxiv_id'] for field in text_fields: if example.get(field): example[field] = decrypt_text(example[field], canary) # Handle answer field (list of strings) if example.get("answer"): decrypted_answers = [] for answer in example["answer"]: if answer: decrypted_answers.append(decrypt_text(answer, canary)) else: decrypted_answers.append(answer) example["answer"] = decrypted_answers # Images are not encrypted - they remain as PIL Image objects # No image decryption needed as per the encryption script yield key, example key += 1