Datasets:
HVU_QA
Browse files- .gitattributes +1 -0
- HVU_QA/30ktrain.json +3 -0
- HVU_QA/fine_tune_qg.py +102 -0
- HVU_QA/generate_question.py +134 -0
- README.md +285 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
HVU_QA/30ktrain.json filter=lfs diff=lfs merge=lfs -text
|
HVU_QA/30ktrain.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:87143be92ee93e76f4e4b6ccfee58da6970b70a80bbc3606fbecdec518b01921
|
| 3 |
+
size 218169057
|
HVU_QA/fine_tune_qg.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from datasets import Dataset
|
| 3 |
+
from sklearn.model_selection import train_test_split
|
| 4 |
+
from transformers import (
|
| 5 |
+
T5Tokenizer,
|
| 6 |
+
T5ForConditionalGeneration,
|
| 7 |
+
TrainingArguments,
|
| 8 |
+
Trainer
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
def load_squad_data(file_path):
|
| 12 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 13 |
+
squad_data = json.load(f)
|
| 14 |
+
|
| 15 |
+
data = []
|
| 16 |
+
for article in squad_data["data"]:
|
| 17 |
+
context = article.get("title", "")
|
| 18 |
+
for paragraph in article["paragraphs"]:
|
| 19 |
+
for qa in paragraph["qas"]:
|
| 20 |
+
if not qa.get("is_impossible", False) and qa.get("answers"):
|
| 21 |
+
answer = qa["answers"][0]["text"]
|
| 22 |
+
question = qa["question"]
|
| 23 |
+
input_text = f"answer: {answer} context: {context}"
|
| 24 |
+
data.append({"input": input_text, "target": question})
|
| 25 |
+
return data
|
| 26 |
+
|
| 27 |
+
def preprocess_function(example, tokenizer, max_input_length=512, max_target_length=64):
|
| 28 |
+
model_inputs = tokenizer(
|
| 29 |
+
example["input"],
|
| 30 |
+
max_length=max_input_length,
|
| 31 |
+
padding="max_length",
|
| 32 |
+
truncation=True,
|
| 33 |
+
)
|
| 34 |
+
labels = tokenizer(
|
| 35 |
+
text_target=example["target"],
|
| 36 |
+
max_length=max_target_length,
|
| 37 |
+
padding="max_length",
|
| 38 |
+
truncation=True,
|
| 39 |
+
)
|
| 40 |
+
model_inputs["labels"] = labels["input_ids"]
|
| 41 |
+
return model_inputs
|
| 42 |
+
|
| 43 |
+
def main():
|
| 44 |
+
data_path = "30ktrain.json"
|
| 45 |
+
output_dir = "t5-viet-qg-finetuned"
|
| 46 |
+
logs_dir = "logs"
|
| 47 |
+
model_name = "VietAI/vit5-base"
|
| 48 |
+
|
| 49 |
+
print("Tải mô hình và tokenizer...")
|
| 50 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
| 51 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
| 52 |
+
|
| 53 |
+
print("Đọc và chia dữ liệu...")
|
| 54 |
+
raw_data = load_squad_data(data_path)
|
| 55 |
+
train_data, val_data = train_test_split(raw_data, test_size=0.2, random_state=42)
|
| 56 |
+
|
| 57 |
+
train_dataset = Dataset.from_list(train_data)
|
| 58 |
+
val_dataset = Dataset.from_list(val_data)
|
| 59 |
+
|
| 60 |
+
tokenized_train = train_dataset.map(
|
| 61 |
+
lambda x: preprocess_function(x, tokenizer),
|
| 62 |
+
batched=True,
|
| 63 |
+
remove_columns=["input", "target"]
|
| 64 |
+
)
|
| 65 |
+
tokenized_val = val_dataset.map(
|
| 66 |
+
lambda x: preprocess_function(x, tokenizer),
|
| 67 |
+
batched=True,
|
| 68 |
+
remove_columns=["input", "target"]
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
print("Cấu hình huấn luyện...")
|
| 72 |
+
training_args = TrainingArguments(
|
| 73 |
+
output_dir=output_dir,
|
| 74 |
+
overwrite_output_dir=True,
|
| 75 |
+
per_device_train_batch_size=1,
|
| 76 |
+
gradient_accumulation_steps=1,
|
| 77 |
+
num_train_epochs=3,
|
| 78 |
+
learning_rate=2e-4,
|
| 79 |
+
weight_decay=0.01,
|
| 80 |
+
warmup_steps=0,
|
| 81 |
+
logging_dir=logs_dir,
|
| 82 |
+
logging_steps=10,
|
| 83 |
+
fp16=False
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
print("Huấn luyện mô hình...")
|
| 87 |
+
trainer = Trainer(
|
| 88 |
+
model=model,
|
| 89 |
+
args=training_args,
|
| 90 |
+
train_dataset=tokenized_train,
|
| 91 |
+
eval_dataset=tokenized_val,
|
| 92 |
+
tokenizer=tokenizer,
|
| 93 |
+
)
|
| 94 |
+
trainer.train()
|
| 95 |
+
|
| 96 |
+
print("Lưu mô hình...")
|
| 97 |
+
model.save_pretrained(output_dir)
|
| 98 |
+
tokenizer.save_pretrained(output_dir)
|
| 99 |
+
print("Huấn luyện hoàn tất!")
|
| 100 |
+
|
| 101 |
+
if __name__ == "__main__":
|
| 102 |
+
main()
|
HVU_QA/generate_question.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from difflib import SequenceMatcher
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 4 |
+
from transformers.utils import logging as hf_logging
|
| 5 |
+
|
| 6 |
+
hf_logging.set_verbosity_error()
|
| 7 |
+
|
| 8 |
+
MODEL_DIR = "t5-viet-qg-finetuned"
|
| 9 |
+
DATA_PATH = "30ktrain.json"
|
| 10 |
+
|
| 11 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_DIR)
|
| 12 |
+
model = T5ForConditionalGeneration.from_pretrained(MODEL_DIR)
|
| 13 |
+
|
| 14 |
+
def find_best_match_from_context(user_context, squad_data):
|
| 15 |
+
best_score, best_entry = 0.0, None
|
| 16 |
+
ui = user_context.lower()
|
| 17 |
+
|
| 18 |
+
for article in squad_data.get("data", []):
|
| 19 |
+
context_title = article.get("title", "")
|
| 20 |
+
score_title = SequenceMatcher(None, ui, context_title.lower()).ratio()
|
| 21 |
+
|
| 22 |
+
for paragraph in article.get("paragraphs", []):
|
| 23 |
+
for qa in paragraph.get("qas", []):
|
| 24 |
+
answers = qa.get("answers", [])
|
| 25 |
+
if not answers:
|
| 26 |
+
continue
|
| 27 |
+
answer_text = answers[0].get("text", "").strip()
|
| 28 |
+
question_text = qa.get("question", "").strip()
|
| 29 |
+
|
| 30 |
+
score = score_title
|
| 31 |
+
if score > best_score:
|
| 32 |
+
best_score = score
|
| 33 |
+
best_entry = (context_title, answer_text, question_text)
|
| 34 |
+
|
| 35 |
+
return best_entry
|
| 36 |
+
|
| 37 |
+
def _near_duplicate(q, seen, thr=0.90):
|
| 38 |
+
for s in seen:
|
| 39 |
+
if SequenceMatcher(None, q, s).ratio() >= thr:
|
| 40 |
+
return True
|
| 41 |
+
return False
|
| 42 |
+
|
| 43 |
+
def generate_questions(user_context,
|
| 44 |
+
total_questions=20,
|
| 45 |
+
batch_size=10,
|
| 46 |
+
top_k=60,
|
| 47 |
+
top_p=0.95,
|
| 48 |
+
temperature=0.9,
|
| 49 |
+
max_input_len=512,
|
| 50 |
+
max_new_tokens=64):
|
| 51 |
+
with open(DATA_PATH, "r", encoding="utf-8") as f:
|
| 52 |
+
squad_data = json.load(f)
|
| 53 |
+
|
| 54 |
+
best_entry = find_best_match_from_context(user_context, squad_data)
|
| 55 |
+
if best_entry is None:
|
| 56 |
+
print("Không tìm thấy dữ liệu phù hợp trong file JSON.")
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
_, answer, _ = best_entry
|
| 60 |
+
|
| 61 |
+
input_text = f"answer: {answer} context: {user_context}"
|
| 62 |
+
inputs = tokenizer(
|
| 63 |
+
input_text,
|
| 64 |
+
return_tensors="pt",
|
| 65 |
+
truncation=True,
|
| 66 |
+
max_length=max_input_len
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
unique_questions = []
|
| 70 |
+
remaining = total_questions
|
| 71 |
+
|
| 72 |
+
while remaining > 0:
|
| 73 |
+
n = min(batch_size, remaining)
|
| 74 |
+
outputs = model.generate(
|
| 75 |
+
**inputs,
|
| 76 |
+
do_sample=True,
|
| 77 |
+
top_k=top_k,
|
| 78 |
+
top_p=top_p,
|
| 79 |
+
temperature=temperature,
|
| 80 |
+
max_new_tokens=max_new_tokens,
|
| 81 |
+
num_return_sequences=n,
|
| 82 |
+
no_repeat_ngram_size=3,
|
| 83 |
+
repetition_penalty=1.12
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
for out in outputs:
|
| 87 |
+
q = tokenizer.decode(out, skip_special_tokens=True).strip()
|
| 88 |
+
if len(q) < 5:
|
| 89 |
+
continue
|
| 90 |
+
if not _near_duplicate(q, unique_questions, thr=0.90):
|
| 91 |
+
unique_questions.append(q)
|
| 92 |
+
|
| 93 |
+
remaining = total_questions - len(unique_questions)
|
| 94 |
+
if remaining <= 0:
|
| 95 |
+
break
|
| 96 |
+
|
| 97 |
+
unique_questions = unique_questions[:total_questions]
|
| 98 |
+
|
| 99 |
+
print("Các câu hỏi mới được sinh ra:")
|
| 100 |
+
for i, q in enumerate(unique_questions, 1):
|
| 101 |
+
print(f"{i}. {q}")
|
| 102 |
+
|
| 103 |
+
if __name__ == "__main__":
|
| 104 |
+
user_context = input("\nNhập đoạn văn bản:\n ").strip()
|
| 105 |
+
|
| 106 |
+
raw_n = input("\nNhập vào số lượng câu hỏi bạn cần:").strip()
|
| 107 |
+
if raw_n == "":
|
| 108 |
+
total_questions = 20
|
| 109 |
+
else:
|
| 110 |
+
try:
|
| 111 |
+
total_questions = int(raw_n)
|
| 112 |
+
except ValueError:
|
| 113 |
+
print("Giá trị không hợp lệ. Dùng mặc định 20.")
|
| 114 |
+
total_questions = 20
|
| 115 |
+
|
| 116 |
+
if total_questions < 1:
|
| 117 |
+
total_questions = 1
|
| 118 |
+
if total_questions > 200:
|
| 119 |
+
total_questions = 200
|
| 120 |
+
|
| 121 |
+
batch_size = 20 if total_questions >= 30 else min(20, total_questions)
|
| 122 |
+
|
| 123 |
+
print("\nĐang phân tích dữ liệu...\n")
|
| 124 |
+
|
| 125 |
+
generate_questions(
|
| 126 |
+
user_context=user_context,
|
| 127 |
+
total_questions=total_questions,
|
| 128 |
+
batch_size=batch_size,
|
| 129 |
+
top_k=60,
|
| 130 |
+
top_p=0.95,
|
| 131 |
+
temperature=0.9,
|
| 132 |
+
max_input_len=512,
|
| 133 |
+
max_new_tokens=64
|
| 134 |
+
)
|
README.md
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HVU_QA
|
| 2 |
+
|
| 3 |
+
**HVU_QA** is a project dedicated to sharing datasets and tools for **Question Generation Processing (NLP)**, developed and maintained by the research team at **Hung Vuong University (HVU), Phu Tho, Vietnam**.
|
| 4 |
+
This project is supported by **Hung Vuong University, Phu Tho, Vietnam**, with the aim of advancing research and applications in low-resource language processing, particularly for the Vietnamese language.
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
## 📚 Overview
|
| 9 |
+
|
| 10 |
+
This repository enables you to:
|
| 11 |
+
|
| 12 |
+
1. Fine-tune the [VietAI/vit5-base](https://huggingface.co/datasets/DANGDOCAO/GeneratingQuestions) model on your own GQ dataset.
|
| 13 |
+
2. Generate multiple, diverse questions given a user-provided text passage (context).
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 📁 Datasets
|
| 18 |
+
|
| 19 |
+
* Built following the **SQuAD v2.0 standard**, ensuring compatibility with NLP pipelines.
|
| 20 |
+
* Includes tens of thousands of high-quality **Question–Context–Answer triples (QCA)**.
|
| 21 |
+
* Suitable for both **training** and **evaluation**.
|
| 22 |
+
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
## 📁 Vietnamese Question Generation Tool
|
| 26 |
+
|
| 27 |
+
A **command-line tool** for:
|
| 28 |
+
|
| 29 |
+
* **Fine-tuning** a question generation model.
|
| 30 |
+
* **Automatically generating questions** from Vietnamese text.
|
| 31 |
+
|
| 32 |
+
Built on **Hugging Face Transformers (VietAI/vit5-base)** and **PyTorch**.
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## Features
|
| 37 |
+
|
| 38 |
+
* Fine-tune a question generation model with SQuAD v2.0 format data.
|
| 39 |
+
* Generate diverse and creative questions from text passages.
|
| 40 |
+
* Flexible generation parameters (`top-k`, `top-p`, `temperature`, etc.).
|
| 41 |
+
* Simple command-line usage.
|
| 42 |
+
* GPU support if available.
|
| 43 |
+
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
## 📊 Evaluation Results
|
| 47 |
+
|
| 48 |
+
We conducted both **manual evaluation** (500 samples) and **automatic evaluation** (1,000 samples).
|
| 49 |
+
|
| 50 |
+
| Evaluation Type | Precision | Recall | F1-Score |
|
| 51 |
+
|------------------|-----------|--------|----------|
|
| 52 |
+
| Automatic (1000) | 0.85 | 0.83 | 0.84 |
|
| 53 |
+
| Manual (500) | 0.88 | 0.86 | 0.87 |
|
| 54 |
+
|
| 55 |
+
➡️ The model generates diverse, grammatically correct, and contextually appropriate questions.
|
| 56 |
+
|
| 57 |
+
---
|
| 58 |
+
|
| 59 |
+
## Creation Process
|
| 60 |
+
|
| 61 |
+
The dataset was built using a **4-stage automated pipeline**:
|
| 62 |
+
|
| 63 |
+
1. Select relevant QA websites from trusted sources.
|
| 64 |
+
2. Automatic crawling to collect raw QA pages.
|
| 65 |
+
3. Semantic tag extraction to obtain clean Question–Context–Answer triples.
|
| 66 |
+
4. AI-assisted filtering to remove noisy or inconsistent samples.
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## 📝 Quality Evaluation
|
| 71 |
+
|
| 72 |
+
A fine-tuned model trained on **HVU_QA (VietAI/vit5-base)** achieved:
|
| 73 |
+
|
| 74 |
+
* **BLEU Score**: 90.61
|
| 75 |
+
* **Semantic similarity**: 97.0% (cosine ≥ 0.8)
|
| 76 |
+
* **Human evaluation**:
|
| 77 |
+
* Grammar: **4.58 / 5**
|
| 78 |
+
* Usefulness: **4.29 / 5**
|
| 79 |
+
|
| 80 |
+
➡️ These results confirm that **HVU_QA is a high-quality resource** for developing robust FAQ-style question generation models.
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
## 📂 Project Structure
|
| 85 |
+
|
| 86 |
+
```
|
| 87 |
+
.HVU_QA
|
| 88 |
+
├── t5-viet-qg-finetuned/
|
| 89 |
+
├── fine_tune_qg.py
|
| 90 |
+
├── generate_question.py
|
| 91 |
+
├── 30ktrain.json
|
| 92 |
+
└── README.md
|
| 93 |
+
```
|
| 94 |
+
> All data files are UTF-8 encoded and ready for use in NLP pipelines.
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## 🛠️ Requirements
|
| 99 |
+
|
| 100 |
+
* Python 3.8+
|
| 101 |
+
* PyTorch >= 1.9
|
| 102 |
+
* Transformers >= 4.30
|
| 103 |
+
* scikit-learn
|
| 104 |
+
* Fine-tuned model (download at: [link](https://huggingface.co/datasets/DANGDOCAO/GeneratingQuestions/tree/main))
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## ⚙️ Setup
|
| 109 |
+
|
| 110 |
+
### 🛠️ Step 1: Download and Extract
|
| 111 |
+
|
| 112 |
+
1. Download `HVU_QA.zip`
|
| 113 |
+
2. Extract into a folder, e.g.:
|
| 114 |
+
|
| 115 |
+
```
|
| 116 |
+
D:\your\HVU_QA
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
### 🛠️ Step 2: Add to Environment Path (if needed)
|
| 120 |
+
|
| 121 |
+
1. Open **System Properties → Environment Variables**
|
| 122 |
+
2. Select `Path` → **Edit** → **New**
|
| 123 |
+
3. Add the path, e.g.:
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
D:\your\HVU_QA
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### 🛠️ Step 3: Open in Visual Studio Code
|
| 130 |
+
|
| 131 |
+
```
|
| 132 |
+
File > Open Folder > D:\HVU_QA
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
### 🛠️ Step 4: Install Required Libraries
|
| 136 |
+
|
| 137 |
+
Open **Terminal** and run:
|
| 138 |
+
|
| 139 |
+
#### Windows (PowerShell)
|
| 140 |
+
|
| 141 |
+
**Required only**
|
| 142 |
+
|
| 143 |
+
```powershell
|
| 144 |
+
python -m pip install --upgrade pip
|
| 145 |
+
pip install torch transformers datasets scikit-learn sentencepiece safetensors
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
**Required + Optional**
|
| 149 |
+
|
| 150 |
+
```powershell
|
| 151 |
+
python -m pip install --upgrade pip
|
| 152 |
+
pip install torch transformers datasets scikit-learn sentencepiece safetensors accelerate tensorboard evaluate sacrebleu rouge-score nltk
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
#### Linux / macOS (bash/zsh)
|
| 156 |
+
|
| 157 |
+
**Required only**
|
| 158 |
+
|
| 159 |
+
```bash
|
| 160 |
+
python3 -m pip install --upgrade pip
|
| 161 |
+
pip install torch transformers datasets scikit-learn sentencepiece safetensors
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
**Required + Optional**
|
| 165 |
+
|
| 166 |
+
```bash
|
| 167 |
+
python3 -m pip install --upgrade pip
|
| 168 |
+
pip install torch transformers datasets scikit-learn sentencepiece safetensors accelerate tensorboard evaluate sacrebleu rouge-score nltk
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
✅ Verify installation:
|
| 172 |
+
|
| 173 |
+
* Windows (PowerShell)
|
| 174 |
+
|
| 175 |
+
```powershell
|
| 176 |
+
python -c "import torch, transformers, datasets, sklearn, sentencepiece, safetensors, accelerate, tensorboard, evaluate, sacrebleu, rouge_score, nltk; print('✅ All dependencies installed correctly!')"
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
* Linux/macOS
|
| 180 |
+
|
| 181 |
+
```bash
|
| 182 |
+
python3 -c "import torch, transformers, datasets, sklearn, sentencepiece, safetensors, accelerate, tensorboard, evaluate, sacrebleu, rouge_score, nltk; print('✅ All dependencies installed correctly!')"
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
---
|
| 186 |
+
|
| 187 |
+
## Usage
|
| 188 |
+
|
| 189 |
+
* Train and evaluate a question generation model.
|
| 190 |
+
* Develop Vietnamese NLP tools.
|
| 191 |
+
* Conduct linguistic research.
|
| 192 |
+
|
| 193 |
+
### Training (Fine-tuning)
|
| 194 |
+
|
| 195 |
+
When you run `fine_tune_qg.py`, the script will:
|
| 196 |
+
|
| 197 |
+
1. Load the dataset from **`30ktrain.json`**
|
| 198 |
+
2. Fine-tune the `VietAI/vit5-base` model
|
| 199 |
+
3. Save the trained model into a new folder named **`t5-viet-qg-finetuned/`**
|
| 200 |
+
|
| 201 |
+
Run:
|
| 202 |
+
|
| 203 |
+
```bash
|
| 204 |
+
python fine_tune_qg.py
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
### Generating Questions
|
| 208 |
+
|
| 209 |
+
```bash
|
| 210 |
+
python generate_question.py
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
**Example:**
|
| 214 |
+
|
| 215 |
+
```
|
| 216 |
+
Input passage:
|
| 217 |
+
Iced milk coffee (Cà phê sữa đá) is a famous drink in Vietnam.
|
| 218 |
+
|
| 219 |
+
Number of questions: 5
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
✅ Output:
|
| 223 |
+
|
| 224 |
+
1. What type of coffee is famous in Vietnam?
|
| 225 |
+
2. Why is iced milk coffee popular?
|
| 226 |
+
3. What ingredients are included in iced milk coffee?
|
| 227 |
+
4. Where does iced milk coffee originate from?
|
| 228 |
+
5. How is Vietnamese iced milk coffee prepared?
|
| 229 |
+
|
| 230 |
+
---
|
| 231 |
+
|
| 232 |
+
## ⚙️ Generation Settings
|
| 233 |
+
|
| 234 |
+
In `generate_question.py`, you can adjust:
|
| 235 |
+
|
| 236 |
+
* `top_k`, `top_p`, `temperature`, `no_repeat_ngram_size`, `repetition_penalty`
|
| 237 |
+
|
| 238 |
+
---
|
| 239 |
+
|
| 240 |
+
## 🤝 Contribution
|
| 241 |
+
|
| 242 |
+
We welcome contributions:
|
| 243 |
+
|
| 244 |
+
* Open issues
|
| 245 |
+
* Submit pull requests
|
| 246 |
+
* Suggest improvements or add datasets
|
| 247 |
+
|
| 248 |
+
---
|
| 249 |
+
|
| 250 |
+
## 📄 Citation
|
| 251 |
+
|
| 252 |
+
If you use this repository or datasets in research, please cite:
|
| 253 |
+
|
| 254 |
+
**Ha Nguyen-Tien, Phuc Le-Hong, Dang Do-Cao, Cuong Nguyen-Hung, Chung Mai-Van. 2025. A Method to Build QA Corpora for Low-Resource Languages. Proceedings of KSE 2025. ACM TALLIP.**
|
| 255 |
+
|
| 256 |
+
### 📚 BibTeX
|
| 257 |
+
|
| 258 |
+
```bibtex
|
| 259 |
+
@inproceedings{nguyen2025hvuqa,
|
| 260 |
+
title={A Method to Build QA Corpora for Low-Resource Languages},
|
| 261 |
+
author={Ha Nguyen-Tien and Phuc Le-Hong and Dang Do-Cao and Cuong Nguyen-Hung and Chung Mai-Van},
|
| 262 |
+
booktitle={Proceedings of KSE 2025},
|
| 263 |
+
year={2025}
|
| 264 |
+
}
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
---
|
| 268 |
+
|
| 269 |
+
## 📬 Contact
|
| 270 |
+
|
| 271 |
+
* **Ha Nguyen-Tien** (Corresponding author)
|
| 272 |
+
📧 [[email protected]](mailto:[email protected])
|
| 273 |
+
|
| 274 |
+
* **Phuc Le-Hong**
|
| 275 |
+
📧 [[email protected]](mailto:[email protected])
|
| 276 |
+
|
| 277 |
+
* **Dang Do-Cao**
|
| 278 |
+
📧 [[email protected]](mailto:[email protected])
|
| 279 |
+
|
| 280 |
+
📍 Faculty of Engineering and Technology, Hung Vuong University, Phu Tho, Vietnam
|
| 281 |
+
🌐 [https://hvu.edu.vn](https://hvu.edu.vn)
|
| 282 |
+
|
| 283 |
+
---
|
| 284 |
+
|
| 285 |
+
*This repository is part of our ongoing effort to support Vietnamese NLP and make language technology more accessible for low-resource and underrepresented languages.*
|