--- license: cc-by-4.0 language: - en tags: - image-classification - computer-vision - skin-lesion - dermatology - medical-imaging pretty_name: 'DERM12345: A Large Dermatoscopic Skin Lesion Dataset' dataset_info: features: - name: image dtype: image - name: image_id dtype: string - name: patient_id dtype: string - name: image_type dtype: class_label: names: '0': dermoscopic - name: copyright-license dtype: string - name: split dtype: string - name: super_class dtype: class_label: names: '0': melanocytic '1': nonmelanocytic - name: malignancy dtype: class_label: names: '0': benign '1': indeterminate '2': malignant - name: main_class_1 dtype: class_label: names: '0': banal '1': dysplastic '2': keratinocytic '3': melanoma '4': vascular '5': fibro_histiocytic '6': lentigo - name: main_class_2 dtype: class_label: names: '0': compound '1': junctional '2': keratinocytic '3': melanoma '4': vascular '5': dermal '6': fibro_histiocytic '7': lentigo '8': recurrent - name: sub_class dtype: class_label: names: '0': acral '1': actinic_keratosis '2': acral_lentiginious '3': angiokeratoma '4': acral_nodular '5': basal_cell_carcinoma '6': bowen_disease '7': blue '8': compound '9': congenital '10': cutaneous_horn '11': dermal '12': dermatofibroma '13': dermatofibrosarcoma_protuberans '14': hemangioma '15': ink_spot_lentigo '16': junctional '17': kaposi_sarcoma '18': lymphangioma '19': lichenoid_keratosis '20': lentigo_maligna '21': lentigo_maligna_melanoma '22': lentigo_simplex '23': 'miescher ' '24': melanoma '25': mammary_paget_disease '26': pyogenic_granuloma '27': recurrent '28': spider_angioma '29': squamous_cell_carcinoma '30': seborrheic_keratosis '31': solar_lentigo '32': spitz_reed - name: label dtype: class_label: names: '0': acb '1': acd '2': ajb '3': ajd '4': ak '5': alm '6': angk '7': anm '8': bcc '9': bd '10': bdb '11': cb '12': ccb '13': ccd '14': cd '15': ch '16': cjb '17': db '18': df '19': dfsp '20': ha '21': isl '22': jb '23': jd '24': ks '25': la '26': lk '27': lm '28': lmm '29': ls '30': mcb '31': mel '32': mpd '33': pg '34': rd '35': sa '36': scc '37': sk '38': sl '39': srjd splits: - name: train num_bytes: 7486706502.32 num_examples: 9860 - name: test num_bytes: 1536027097.91 num_examples: 2485 download_size: 6810263492 dataset_size: 9022733600.23 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - image-classification --- # DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset ## Dataset Description Skin lesion datasets provide essential information for understanding various skin conditions and developing effective diagnostic tools. They aid the artificial intelligence-based early detection of skin cancer, facilitate treatment planning, and contribute to medical education and research. Published large datasets have partially coverage the subclassifications of the skin lesions. This limitation highlights the need for more expansive and varied datasets to reduce false predictions and help improve the failure analysis for skin lesions. This study presents a diverse dataset comprising 12,345 dermatoscopic images with 40 subclasses of skin lesions collected in Turkiye which comprises different skin types in the transition zone between Europe and Asia. Each subgroup contains high-resolution photos and expert annotations, providing a strong and reliable basis for future research. The detailed analysis of each subgroup provided in this study facilitates targeted research endeavors and enhances the depth of understanding regarding the skin lesions. This dataset distinguishes itself through a diverse structure with its 5 super classes, 15 main classes, 40 subclasses and 12,345 high-resolution dermatoscopic images. * https://doi.org/10.7910/DVN/DAXZ7P ## Dataset Structure ### Data Splits The dataset is divided into two splits: * train: 9,860 images for training models. * test: 2,485 images for evaluating model performance. ### Data Fields Each sample in the dataset contains the following fields: * image: A PIL Image object containing the dermatoscopic image. * image_id: A unique identifier for the image (e.g., DERM_255498). * patient_id: A unique identifier for the patient. * image_type: The type of image (all are dermoscopic). * copyright-license: The license of the image (CC-BY). * split: The split the example belongs to (train or test). * super_class: The highest-level category of the lesion. * malignancy: The malignancy status (benign or malignant). * main_class_1: The primary main classification. * main_class_2: A secondary main classification (can be null). * sub_class: A more specific sub-classification (can be null). * label: The most detailed subclass label, suitable for fine-grained classification tasks. ## How To Use The dataset can be easily loaded using the Hugging Face `datasets` library. ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("DermaVLM/derm12345") train_data = dataset['train'] # Get the first example example = train_data[0] image = example['image'] label = example['label'] label_name = train_data.features['label'].int2str(label) print(f"Label: {label_name}") image.show() ``` ## Citation If you use this dataset in your research, please cite the original publication: ```bibtex @article{yilmaz2024derm12345, title={Derm12345: A large, multisource dermatoscopic skin lesion dataset with 40 subclasses}, author={Yilmaz, Abdurrahim and Yasar, Sirin Pekcan and Gencoglan, Gulsum and Temelkuran, Burak}, journal={Scientific Data}, volume={11}, number={1}, pages={1302}, year={2024}, publisher={Nature Publishing Group UK London} } ``` ```bibtex @data{DVN/DAXZ7P_2024, author = {Yilmaz, Abdurrahim and Yasar, Sirin Pekcan and Gencoglan, Gulsum and Temelkuran, Burak}, publisher = {Harvard Dataverse}, title = {{DERM12345: A Large, Multisource Dermatoscopic Skin Lesion Dataset with 40 Subclasses}}, UNF = {UNF:6:X4eUEs5UzSacwktQ3FBk+Q==}, year = {2024}, version = {V2}, doi = {10.7910/DVN/DAXZ7P}, url = {https://doi.org/10.7910/DVN/DAXZ7P} } ```