Datasets:
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
explanation-generation
License:
| """Mathematics Aptitude Test of Heuristics (MATH) dataset, lighteval format with correct builder configs.""" | |
| import json | |
| import os | |
| from datasets import load_dataset, Dataset, DatasetDict, GeneratorBasedBuilder, BuilderConfig, DatasetInfo, Value, Features, Split, SplitGenerator, Version | |
| _CITATION = """\ | |
| @article{hendrycksmath2021, | |
| title={Measuring Mathematical Problem Solving With the MATH Dataset}, | |
| author={Dan Hendrycks | |
| and Collin Burns | |
| and Saurav Kadavath | |
| and Akul Arora | |
| and Steven Basart | |
| and Eric Tang | |
| and Dawn Song | |
| and Jacob Steinhardt}, | |
| journal={arXiv preprint arXiv:2103.03874}, | |
| year={2021} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The Mathematics Aptitude Test of Heuristics (MATH) dataset consists of problems | |
| from mathematics competitions, including the AMC 10, AMC 12, AIME, and more. | |
| Each problem in MATH has a full step-by-step solution, which can be used to teach | |
| models to generate answer derivations and explanations. This version of the dataset | |
| includes appropriate builder configs s.t. it can be used as a drop-in replacement | |
| for the now missing lighteval/MATH dataset. | |
| """ | |
| _HOMEPAGE = "https://github.com/hendrycks/math" | |
| _LICENSE = "https://github.com/hendrycks/math/blob/main/LICENSE" | |
| # Original data URL: "https://people.eecs.berkeley.edu/~hendrycks/MATH.tar" | |
| _URL = "data/MATH.zip" | |
| class FilteredTypeConfig(BuilderConfig): | |
| def __init__(self, type_value, type_name, **kwargs): | |
| super().__init__(**kwargs) | |
| self.type_value = type_value | |
| self.type_name = type_name | |
| class FilteredTypeDatasetBuilder(GeneratorBasedBuilder): | |
| """Mathematics Aptitude Test of Heuristics (MATH) dataset.""" | |
| VERSION = Version("1.0.0") | |
| BUILDER_CONFIGS = [FilteredTypeConfig( | |
| name="default", | |
| version="1.0.0", | |
| description=f"default builder config", | |
| type_name="default", # for builder config | |
| type_value="default", # in original dataset | |
| )] + [ | |
| FilteredTypeConfig( | |
| name=type_name, | |
| version="1.0.0", | |
| description=f"Dataset filtered by type: {type_value}", | |
| type_name=type_name, # for builder config | |
| type_value=type_value, # in original dataset | |
| ) | |
| for type_name, type_value in [("algebra", "Algebra"), ("counting_and_probability", "Counting & Probability"), ("geometry", "Geometry"), ("intermediate_algebra", "Intermediate Algebra"), ("number_theory", "Number Theory"), ("prealgebra", "Prealgebra"), ("precalculus", "Precalculus")] | |
| ] | |
| def _info(self): | |
| return DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=Features({ | |
| "problem": Value("string"), | |
| "level": Value("string"), | |
| "solution": Value("string"), | |
| "type": Value("string"), | |
| }), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| download_dir = dl_manager.download_and_extract(_URL) | |
| return [ | |
| SplitGenerator( | |
| name=Split.TRAIN, | |
| gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "train"))}, | |
| ), | |
| SplitGenerator( | |
| name=Split.TEST, | |
| gen_kwargs={"data_dir": dl_manager.iter_files(os.path.join(download_dir, "MATH", "test"))}, | |
| ), | |
| ] | |
| def _generate_examples(self, data_dir): | |
| type_value = self.config.type_value # Access the type value for the current config | |
| """Yields examples as (key, example) tuples. Filters by type if appropriate builder config is given.""" | |
| for id_, filepath in enumerate(data_dir): | |
| with open(filepath, "rb") as fin: | |
| example = json.load(fin) | |
| if type_value == "default" or example["type"] == type_value: | |
| yield id_, example | |