Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
Libraries:
Datasets
pandas
License:
File size: 1,779 Bytes
0c7e22d
 
e914ba8
 
fc6a996
 
 
a0f26e2
 
 
 
e914ba8
 
 
 
bbe4465
9e09c42
e914ba8
 
0c7e22d
9e09c42
2748b13
e914ba8
c425f86
 
 
 
 
 
 
 
7b52765
c425f86
 
 
 
 
37d4a71
 
 
 
e914ba8
 
 
 
 
 
fc6a996
 
 
 
 
 
36a92b8
 
a0f26e2
36a92b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: cc-by-nc-sa-4.0
language:
- en
- fi
- fr
- de
- sv
- nl
- fa
- da
configs:
- config_name: test
  data_files:
  - split: test
    path: eloquent-2025-robustness-prompts.json
pretty_name: ELOQUENT Robustness and Consistency Task 2025
size_categories:
- n<1K
---
# ELOQUENT Robustness and Consistency Task
This dataset contains the sample and test datasets for the Robustness and Consistency task, which is part of the ELOQUENT lab. This dataset is for participants to generate texts for prompt variants, to investigate prompt style conditioned variation.

- [Robustness task](https://eloquent-lab.github.io/task-robustness-and-consistency/)
- [ELOQUENT lab](https://eloquent-lab.github.io/)
- [CLEF conference](https://clef2025.clef-initiative.eu/) 9-12 September 2025
  
## The task in brief (this is a simple task to execute!)
- This dataset provides a number of questions in several languages
    - e.g. `"question": "Is it more important to be polite or to be honest?"`
- You use a generative language model to answer the question in the languages your model handles
- Use separate sessions for each response! They are not intended to be interpreted as follow-up responses. 
- You send the response to us before mid-May 2025
- We and you together discuss the results to explore how linguistic variation conditions responses
- We write a joint report
- Workshop at CLEF in Madrid 9-12 September 2025

## Submit Here:

[Submission Form](https://forms.gle/cy5hrrWRbyJ8mchz7)

#### Test Data


```python
from datasets import load_dataset
data = load_dataset("Eloquent/Robustness", "test")
```
## Dataset authors

Marie Isabel Engels (en, de)
Jussi Karlgren (en, sv)
Josiane Mothe (fr)
Aarne Talman (fi)
Maria Barrett (da)
Shaghayegh Roohi (fa)
Sander Bijl de Vroe (nl)