| import csv | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{cs_restaurants, | |
| address = {Tokyo, Japan}, | |
| title = {Neural {Generation} for {Czech}: {Data} and {Baselines}}, | |
| shorttitle = {Neural {Generation} for {Czech}}, | |
| url = {https://www.aclweb.org/anthology/W19-8670/}, | |
| urldate = {2019-10-18}, | |
| booktitle = {Proceedings of the 12th {International} {Conference} on {Natural} {Language} {Generation} ({INLG} 2019)}, | |
| author = {Dušek, Ondřej and Jurčíček, Filip}, | |
| month = oct, | |
| year = {2019}, | |
| pages = {563--574}, | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| The task is generating responses in the context of a (hypothetical) dialogue | |
| system that provides information about restaurants. The input is a basic | |
| intent/dialogue act type and a list of slots (attributes) and their values. | |
| The output is a natural language sentence. | |
| """ | |
| _URLs = { | |
| "train": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/train.json", | |
| "validation": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/devel.json", | |
| "test": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/test.json", | |
| "challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/cs_restaurants.zip", | |
| } | |
| class CSRestaurants(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| DEFAULT_CONFIG_NAME = "cs_restaurants" | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "gem_id": datasets.Value("string"), | |
| "gem_parent_id": datasets.Value("string"), | |
| "dialog_act": datasets.Value("string"), | |
| "dialog_act_delexicalized": datasets.Value("string"), | |
| "target_delexicalized": datasets.Value("string"), | |
| "target": datasets.Value("string"), | |
| "references": [datasets.Value("string")], | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=datasets.info.SupervisedKeysData( | |
| input="dialog_act", output="target" | |
| ), | |
| homepage="https://github.com/UFAL-DSG/cs_restaurant_dataset", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| dl_dir = dl_manager.download_and_extract(_URLs) | |
| challenge_sets = [ | |
| ("challenge_train_sample", "train_cs_restaurants_RandomSample500.json"), | |
| ( | |
| "challenge_validation_sample", | |
| "validation_cs_restaurants_RandomSample500.json", | |
| ), | |
| ( | |
| "challenge_test_scramble", | |
| "test_cs_restaurants_ScrambleInputStructure500.json", | |
| ), | |
| ] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} | |
| ) | |
| for spl in ["train", "validation", "test"] | |
| ] + [ | |
| datasets.SplitGenerator( | |
| name=challenge_split, | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| dl_dir["challenge_set"], "cs_restaurants", filename | |
| ), | |
| "split": challenge_split, | |
| }, | |
| ) | |
| for challenge_split, filename in challenge_sets | |
| ] | |
| def _generate_examples(self, filepath, split, filepaths=None, lang=None): | |
| """Yields examples.""" | |
| if split.startswith("challenge"): | |
| exples = json.load(open(filepath, encoding="utf-8")) | |
| if isinstance(exples, dict): | |
| assert len(exples) == 1, "multiple entries found" | |
| exples = list(exples.values())[0] | |
| for id_, exple in enumerate(exples): | |
| if len(exple) == 0: | |
| continue | |
| exple["gem_parent_id"] = exple["gem_id"] | |
| exple["gem_id"] = f"cs_restaurants-{split}-{id_}" | |
| yield id_, exple | |
| else: | |
| with open(filepath, encoding="utf8") as f: | |
| data = json.load(f) | |
| for id_, instance in enumerate(data): | |
| yield id_, { | |
| "gem_id": f"cs_restaurants-{split}-{id_}", | |
| "gem_parent_id": f"cs_restaurants-{split}-{id_}", | |
| "dialog_act": instance["da"], | |
| "dialog_act_delexicalized": instance["delex_da"], | |
| "target": instance["text"], | |
| "target_delexicalized": instance["delex_text"], | |
| "references": [] if split == "train" else [instance["text"]], | |
| } | |
