File size: 3,261 Bytes
1901721 37170fd 1901721 37170fd 1901721 37170fd 1901721 37170fd e6c070d 37170fd e6c070d 37170fd 605b0c0 37170fd e6c070d 37170fd e6c070d b15b7aa e6c070d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
task_categories:
- image-segmentation
---
# NLCD-L
This dataset incorporates both SSL4EO-L Benchmark dataset and the NLCD-L dataset which is derived from the original SSL4EO-L Benchmark dataset by combining optical data from Landsat-7 and Landsat 8-9 with NLCD ground-truth labels, originally proposed in SSL4EO-L. The dataset contains 20 MSI bands, deliberately exceeding Sentinel-2’s channel count. It comprises 17,500 training samples, 3,750 validation samples, and 3,750 test samples.
Please refer to the original SSL4EO-L paper for more detailed information about the original SSL4EO-L Benchmark dataset:
- Paper: https://arxiv.org/abs/2306.09424
## How to Use This Dataset
```python
from datasets import load_dataset
# To access NLCD-L, set name to etm_oli_toa_nlcd in load_dataset function
dataset = load_dataset("GFM-Bench/SSL4EO-L-Benchmark", name="etm_oli_toa_nlcd")
```
Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗
## Dataset Metadata
The following metadata provides details about the Landsat imagery used in the dataset:
| Configuration Name | Number of Bands | Number of Label Classes | Spatial Resolution |
|:---------------:|:------------:|:------------:|:------------:|
| etm_sr_cdl | 6 | 134 | 30 |
| etm_sr_nlcd | 6 | 21 | 30 |
| etm_toa_cdl | 9 | 134 | 30 |
| etm_toa_nlcd | 9 | 21 | 30 |
| oli_sr_nlcd | 7 | 134 | 30 |
| oli_sr_nlcd | 7 | 21 | 30 |
| oli_tirs_toa_cdl | 11 | 134 | 30 |
| oli_tirs_toa_nlcd | 11 | 21 | 30 |
| **etm_oli_toa_cdl** | 20 | 134 | 30 |
| **etm_oli_toa_nlcd** | 20 | 21 | 30 |
## Dataset Splits
The **NLCD-L** and SSL4EO-L Benchmark dataset consist following splits:
- **train**: 17,500 samples
- **val**: 3,750 samples
- **test**: 3,750 samples
## Dataset Features:
The **NLCD-L** and SSL4EO-L dataset consist of following features:
<!--- **radar**: the Sentinel-1 image.-->
- **optical**: the Landsat image.
- **label**: the segmentation labels.
<!--- **radar_channel_wv**: the central wavelength of each Sentinel-1 bands.-->
- **optical_channel_wv**: the central wavelength of each Landsat bands.
- **spatial_resolution**: the spatial resolution of images.
## Citation
If you use either the NLCD-L dataset or the original SSL4EO-L Benchmark dataset in your work, please cite the original paper:
```
@article{stewart2023ssl4eo,
title={Ssl4eo-l: Datasets and foundation models for landsat imagery},
author={Stewart, Adam and Lehmann, Nils and Corley, Isaac and Wang, Yi and Chang, Yi-Chia and Ait Ali Braham, Nassim Ait and Sehgal, Shradha and Robinson, Caleb and Banerjee, Arindam},
journal={Advances in Neural Information Processing Systems},
volume={36},
pages={59787--59807},
year={2023}
}
```
and if you also find our benchmark useful, please consider citing our paper:
```
@misc{si2025scalablefoundationmodelmultimodal,
title={Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data},
author={Haozhe Si and Yuxuan Wan and Minh Do and Deepak Vasisht and Han Zhao and Hendrik F. Hamann},
year={2025},
eprint={2503.12843},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.12843},
}
``` |