Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- giskard
|
| 4 |
+
- knowledge-base
|
| 5 |
+
- information-retrieval
|
| 6 |
+
task_categories:
|
| 7 |
+
- text-generation
|
| 8 |
+
- text2text-generation
|
| 9 |
+
- question-answering
|
| 10 |
+
- text-retrieval
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Dataset Card for GTimothee/my-knowledge-base
|
| 14 |
+
> This repository was created using the [giskard](https://github.com/Giskard-AI/giskard) library, an open-source Python framework designed to evaluate and test AI systems.
|
| 15 |
+
|
| 16 |
+
This dataset comprises a giskard's `KnowledgeBase` containing 310 documents. If embeddings were generated before the saving process, they are included and will be automatically loaded into a vector store when required.
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
You can load this knowledge base using the following code:
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from giskard.rag import KnowledgeBase
|
| 24 |
+
kb = KnowledgeBase.load_from_hf_hub("GTimothee/my-knowledge-base")
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Configuration
|
| 28 |
+
|
| 29 |
+
The configuration details for this Knowledge Base (can also be found in the `config.json` file):
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
{
|
| 33 |
+
"columns": null,
|
| 34 |
+
"chunk_size": 2048,
|
| 35 |
+
"min_topic_size": 8,
|
| 36 |
+
"language": "en",
|
| 37 |
+
"seed": null,
|
| 38 |
+
"embedding_model": null
|
| 39 |
+
}
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
<h2 style="text-align: center;">
|
| 45 |
+
<span style="display: inline-flex; align-items: center;">
|
| 46 |
+
Built with
|
| 47 |
+
<a href="https://giskard.ai" target="_blank" style="display: inline-flex;">
|
| 48 |
+
<img src="https://cdn.prod.website-files.com/601d6f7d0b9c984f07bf10bc/62983fa8ef716259c397a57d_logo.svg"
|
| 49 |
+
alt="Giskard Logo"
|
| 50 |
+
width="100">
|
| 51 |
+
</a>
|
| 52 |
+
</span>
|
| 53 |
+
</h2>
|
| 54 |
+
|
| 55 |
+
<div style="text-align: center;">
|
| 56 |
+
<a href="https://github.com/Giskard-AI/giskard" target="_blank" style="display: inline-flex;"> Giskard </a> helps identify performance, bias, and security issues in AI applications, supporting both LLM-based systems like RAG agents and traditional machine learning models for tabular data.
|
| 57 |
+
</div>
|