GTimothee commited on
Commit
5f1e29c
·
verified ·
1 Parent(s): dee8b8b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - giskard
4
+ - knowledge-base
5
+ - information-retrieval
6
+ task_categories:
7
+ - text-generation
8
+ - text2text-generation
9
+ - question-answering
10
+ - text-retrieval
11
+ ---
12
+
13
+ # Dataset Card for GTimothee/my-knowledge-base
14
+ > This repository was created using the [giskard](https://github.com/Giskard-AI/giskard) library, an open-source Python framework designed to evaluate and test AI systems.
15
+
16
+ This dataset comprises a giskard's `KnowledgeBase` containing 310 documents. If embeddings were generated before the saving process, they are included and will be automatically loaded into a vector store when required.
17
+
18
+ ## Usage
19
+
20
+ You can load this knowledge base using the following code:
21
+
22
+ ```python
23
+ from giskard.rag import KnowledgeBase
24
+ kb = KnowledgeBase.load_from_hf_hub("GTimothee/my-knowledge-base")
25
+ ```
26
+
27
+ ## Configuration
28
+
29
+ The configuration details for this Knowledge Base (can also be found in the `config.json` file):
30
+
31
+ ```bash
32
+ {
33
+ "columns": null,
34
+ "chunk_size": 2048,
35
+ "min_topic_size": 8,
36
+ "language": "en",
37
+ "seed": null,
38
+ "embedding_model": null
39
+ }
40
+ ```
41
+
42
+ ---
43
+
44
+ <h2 style="text-align: center;">
45
+ <span style="display: inline-flex; align-items: center;">
46
+ Built with
47
+ <a href="https://giskard.ai" target="_blank" style="display: inline-flex;">
48
+ <img src="https://cdn.prod.website-files.com/601d6f7d0b9c984f07bf10bc/62983fa8ef716259c397a57d_logo.svg"
49
+ alt="Giskard Logo"
50
+ width="100">
51
+ </a>
52
+ </span>
53
+ </h2>
54
+
55
+ <div style="text-align: center;">
56
+ <a href="https://github.com/Giskard-AI/giskard" target="_blank" style="display: inline-flex;"> Giskard </a> helps identify performance, bias, and security issues in AI applications, supporting both LLM-based systems like RAG agents and traditional machine learning models for tabular data.
57
+ </div>