File size: 4,975 Bytes
8e27693 2441ae1 c8142d9 2441ae1 de97809 2441ae1 de97809 2441ae1 de97809 2441ae1 de97809 2441ae1 de97809 2441ae1 de97809 2441ae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
dataset_info:
features:
- name: sms
dtype: string
- name: label
dtype: int64
- name: char_len
dtype: int64
- name: word_count
dtype: int64
- name: punct_score
dtype: int64
- name: spam_keywords
dtype: int64
- name: lexical_diversity
dtype: float64
- name: readability
dtype: float64
- name: caps_ratio
dtype: float64
- name: digit_ratio
dtype: float64
- name: exclaim_ratio
dtype: float64
- name: url_flag
dtype: int64
- name: spammy_words
dtype: int64
- name: entropy
dtype: float64
splits:
- name: train
num_bytes: 974514
num_examples: 5171
download_size: 446788
dataset_size: 974514
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# SMS Spam Enriched Dataset
An enriched version of the classic **SMS Spam Collection Dataset from UC Irvine** with additional engineered features and semantic embeddings.
This dataset is designed for **spam detection, feature engineering experiments, and model interpretability research**.
---
## Dataset Overview
- **Total samples**: 5,171
- **Classes**:
- `0`: Ham (non-spam)
- `1`: Spam
---
## Enrichments Added
Alongside the raw SMS text (`sms`) and labels (`label`), we engineered multiple new features:
1. **char_len** β Total characters in the message
2. **word_count** β Total words in the message
3. **punct_score** β Weighted score for punctuation usage (`!`, `?`, `...`)
4. **spam_keywords** β Count of known spammy tokens (`free`, `win`, `urgent`, etc.)
5. **lexical_diversity** β Ratio of unique words to total words
6. **readability** β Flesch Reading Ease score
7. **caps_ratio** β Proportion of uppercase characters
8. **digit_ratio** β Proportion of numeric digits
9. **exclaim_ratio** β Ratio of exclamation marks to total characters
10. **url_flag** β Binary indicator for presence of URLs
11. **spammy_words** β Count of flagged high-signal words
12. **entropy** β Shannon entropy of characters
13. **embeddings** β Sentence-transformer vector representations (for downstream tasks like clustering, semantic similarity, visualization)
---
## Example Row
| sms | label | char_len | word_count | punct_score | spam_keywords | lexical_diversity | readability | caps_ratio | digit_ratio | url_flag | entropy |
|------------------------------------------------|-------|----------|------------|-------------|---------------|-------------------|-------------|------------|-------------|----------|---------|
| "Free entry in 2 a wkly comp to win FA Cup..." | 1 | 156 | 28 | 0 | 3 | 0.857 | 80.83 | 0.064 | 0.16 | 0 | 4.69 |
---
## Visualizations
Below is a **PCA projection** of SMS embeddings, showing clear separation between spam (red) and ham (blue):

---
## Benchmark Models
We trained baseline classifiers using the enriched dataset:
- **Logistic Regression (with combined features)**
- Accuracy: ~99%
- F1 (spam): ~0.95
- **Random Forest (with combined features)**
- Accuracy: ~98%
- F1 (spam): ~0.92
Logistic Regression Report (Combined Features):
precision recall f1-score support
0 0.99 1.00 0.99 904
1 0.98 0.92 0.95 131
accuracy 0.99 1035
macro avg 0.99 0.96 0.97 1035
weighted avg 0.99 0.99 0.99 1035
Random Forest Report (Combined Features):
precision recall f1-score support
0 0.98 1.00 0.99 904
1 0.99 0.86 0.92 131
accuracy 0.98 1035
macro avg 0.99 0.93 0.96 1035
weighted avg 0.98 0.98 0.98 1035
---
## Use Cases
- Spam detection model training
- Feature engineering demonstration
- Embedding-based similarity and clustering tasks
- Educational material for NLP + ML pipelines
---
## Citation
If you use this dataset, please cite the original SMS Spam Collection dataset:
> @inproceedings{Almeida2011SpamFiltering, title={Contributions to the Study of SMS Spam Filtering: New Collection and Results}, author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami}, year={2011}, booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)", }.
> Dataset Enrichment and Feature Engineering contributions by Naga Adithya Kaushik (GenAIDevTOProd).
---
## License
This dataset is distributed under the same terms as the original SMS Spam dataset (publicly available for research).
---
|