GenAIDevTOProd commited on
Commit
2441ae1
Β·
verified Β·
1 Parent(s): f1a4af4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md CHANGED
@@ -41,3 +41,114 @@ configs:
41
  - split: train
42
  path: data/train-*
43
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  - split: train
42
  path: data/train-*
43
  ---
44
+
45
+ # SMS Spam Enriched Dataset
46
+
47
+ An enriched version of the classic **SMS Spam Collection Dataset from UC Irvine** with additional engineered features and semantic embeddings.
48
+ This dataset is designed for **spam detection, feature engineering experiments, and model interpretability research**.
49
+
50
+ ---
51
+
52
+ ## Dataset Overview
53
+
54
+ - **Total samples**: 5,171
55
+ - **Classes**:
56
+ - `0`: Ham (non-spam)
57
+ - `1`: Spam
58
+
59
+ ---
60
+
61
+ ## Enrichments Added
62
+
63
+ Alongside the raw SMS text (`sms`) and labels (`label`), we engineered multiple new features:
64
+
65
+ 1. **char_len** β†’ Total characters in the message
66
+ 2. **word_count** β†’ Total words in the message
67
+ 3. **punct_score** β†’ Weighted score for punctuation usage (`!`, `?`, `...`)
68
+ 4. **spam_keywords** β†’ Count of known spammy tokens (`free`, `win`, `urgent`, etc.)
69
+ 5. **lexical_diversity** β†’ Ratio of unique words to total words
70
+ 6. **readability** β†’ Flesch Reading Ease score
71
+ 7. **caps_ratio** β†’ Proportion of uppercase characters
72
+ 8. **digit_ratio** β†’ Proportion of numeric digits
73
+ 9. **exclaim_ratio** β†’ Ratio of exclamation marks to total characters
74
+ 10. **url_flag** β†’ Binary indicator for presence of URLs
75
+ 11. **spammy_words** β†’ Count of flagged high-signal words
76
+ 12. **entropy** β†’ Shannon entropy of characters
77
+ 13. **embeddings** β†’ Sentence-transformer vector representations (for downstream tasks like clustering, semantic similarity, visualization)
78
+
79
+ ---
80
+
81
+ ## Example Row
82
+
83
+ | sms | label | char_len | word_count | punct_score | spam_keywords | lexical_diversity | readability | caps_ratio | digit_ratio | url_flag | entropy |
84
+ |------------------------------------------------|-------|----------|------------|-------------|---------------|-------------------|-------------|------------|-------------|----------|---------|
85
+ | "Free entry in 2 a wkly comp to win FA Cup..." | 1 | 156 | 28 | 0 | 3 | 0.857 | 80.83 | 0.064 | 0.16 | 0 | 4.69 |
86
+
87
+ ---
88
+
89
+ ## Visualizations
90
+
91
+ Below is a **PCA projection** of SMS embeddings, showing clear separation between spam (red) and ham (blue):
92
+
93
+ ![PCA Plot](PCA project of sms embeddings.png)
94
+
95
+ ---
96
+
97
+ ## Benchmark Models
98
+
99
+ We trained baseline classifiers using the enriched dataset:
100
+
101
+ - **Logistic Regression (with combined features)**
102
+ - Accuracy: ~99%
103
+ - F1 (spam): ~0.95
104
+
105
+ - **Random Forest (with combined features)**
106
+ - Accuracy: ~98%
107
+ - F1 (spam): ~0.92
108
+
109
+ Logistic Regression Report (Combined Features):
110
+ precision recall f1-score support
111
+
112
+ 0 0.99 1.00 0.99 904
113
+ 1 0.98 0.92 0.95 131
114
+
115
+ accuracy 0.99 1035
116
+ macro avg 0.99 0.96 0.97 1035
117
+ weighted avg 0.99 0.99 0.99 1035
118
+
119
+
120
+ Random Forest Report (Combined Features):
121
+ precision recall f1-score support
122
+
123
+ 0 0.98 1.00 0.99 904
124
+ 1 0.99 0.86 0.92 131
125
+
126
+ accuracy 0.98 1035
127
+ macro avg 0.99 0.93 0.96 1035
128
+ weighted avg 0.98 0.98 0.98 1035
129
+
130
+ ---
131
+
132
+ ## Use Cases
133
+
134
+ - Spam detection model training
135
+ - Feature engineering demonstration
136
+ - Embedding-based similarity and clustering tasks
137
+ - Educational material for NLP + ML pipelines
138
+
139
+ ---
140
+
141
+ ## Citation
142
+
143
+ If you use this dataset, please cite the original SMS Spam Collection dataset:
144
+
145
+ > @inproceedings{Almeida2011SpamFiltering, title={Contributions to the Study of SMS Spam Filtering: New Collection and Results}, author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami}, year={2011}, booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)", }.
146
+
147
+ ---
148
+
149
+ ## License
150
+
151
+ This dataset is distributed under the same terms as the original SMS Spam dataset (publicly available for research).
152
+
153
+ ---
154
+