--- dataset_info: features: - name: sms dtype: string - name: label dtype: int64 - name: char_len dtype: int64 - name: word_count dtype: int64 - name: punct_score dtype: int64 - name: spam_keywords dtype: int64 - name: lexical_diversity dtype: float64 - name: readability dtype: float64 - name: caps_ratio dtype: float64 - name: digit_ratio dtype: float64 - name: exclaim_ratio dtype: float64 - name: url_flag dtype: int64 - name: spammy_words dtype: int64 - name: entropy dtype: float64 splits: - name: train num_bytes: 974514 num_examples: 5171 download_size: 446788 dataset_size: 974514 configs: - config_name: default data_files: - split: train path: data/train-* --- # SMS Spam Enriched Dataset An enriched version of the classic **SMS Spam Collection Dataset from UC Irvine** with additional engineered features and semantic embeddings. This dataset is designed for **spam detection, feature engineering experiments, and model interpretability research**. --- ## Dataset Overview - **Total samples**: 5,171 - **Classes**: - `0`: Ham (non-spam) - `1`: Spam --- ## Enrichments Added Alongside the raw SMS text (`sms`) and labels (`label`), we engineered multiple new features: 1. **char_len** → Total characters in the message 2. **word_count** → Total words in the message 3. **punct_score** → Weighted score for punctuation usage (`!`, `?`, `...`) 4. **spam_keywords** → Count of known spammy tokens (`free`, `win`, `urgent`, etc.) 5. **lexical_diversity** → Ratio of unique words to total words 6. **readability** → Flesch Reading Ease score 7. **caps_ratio** → Proportion of uppercase characters 8. **digit_ratio** → Proportion of numeric digits 9. **exclaim_ratio** → Ratio of exclamation marks to total characters 10. **url_flag** → Binary indicator for presence of URLs 11. **spammy_words** → Count of flagged high-signal words 12. **entropy** → Shannon entropy of characters 13. **embeddings** → Sentence-transformer vector representations (for downstream tasks like clustering, semantic similarity, visualization) --- ## Example Row | sms | label | char_len | word_count | punct_score | spam_keywords | lexical_diversity | readability | caps_ratio | digit_ratio | url_flag | entropy | |------------------------------------------------|-------|----------|------------|-------------|---------------|-------------------|-------------|------------|-------------|----------|---------| | "Free entry in 2 a wkly comp to win FA Cup..." | 1 | 156 | 28 | 0 | 3 | 0.857 | 80.83 | 0.064 | 0.16 | 0 | 4.69 | --- ## Visualizations Below is a **PCA projection** of SMS embeddings, showing clear separation between spam (red) and ham (blue): ![PCA Plot](https://huggingface.co/datasets/GenAIDevTOProd/sms-spam-enriched/blob/main/PCA%20project%20of%20sms%20embeddings.png) --- ## Benchmark Models We trained baseline classifiers using the enriched dataset: - **Logistic Regression (with combined features)** - Accuracy: ~99% - F1 (spam): ~0.95 - **Random Forest (with combined features)** - Accuracy: ~98% - F1 (spam): ~0.92 Logistic Regression Report (Combined Features): precision recall f1-score support 0 0.99 1.00 0.99 904 1 0.98 0.92 0.95 131 accuracy 0.99 1035 macro avg 0.99 0.96 0.97 1035 weighted avg 0.99 0.99 0.99 1035 Random Forest Report (Combined Features): precision recall f1-score support 0 0.98 1.00 0.99 904 1 0.99 0.86 0.92 131 accuracy 0.98 1035 macro avg 0.99 0.93 0.96 1035 weighted avg 0.98 0.98 0.98 1035 --- ## Use Cases - Spam detection model training - Feature engineering demonstration - Embedding-based similarity and clustering tasks - Educational material for NLP + ML pipelines --- ## Citation If you use this dataset, please cite the original SMS Spam Collection dataset: > @inproceedings{Almeida2011SpamFiltering, title={Contributions to the Study of SMS Spam Filtering: New Collection and Results}, author={Tiago A. Almeida and Jose Maria Gomez Hidalgo and Akebo Yamakami}, year={2011}, booktitle = "Proceedings of the 2011 ACM Symposium on Document Engineering (DOCENG'11)", }. > Dataset Enrichment and Feature Engineering contributions by Naga Adithya Kaushik (GenAIDevTOProd). --- ## License This dataset is distributed under the same terms as the original SMS Spam dataset (publicly available for research). ---