Add RT-DETR object detection training script
Browse files- train_rtdetr_detection.py +266 -0
train_rtdetr_detection.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = [
|
| 3 |
+
# "transformers>=4.40.0",
|
| 4 |
+
# "torch",
|
| 5 |
+
# "torchvision",
|
| 6 |
+
# "datasets",
|
| 7 |
+
# "albumentations",
|
| 8 |
+
# "accelerate",
|
| 9 |
+
# "huggingface_hub",
|
| 10 |
+
# "Pillow",
|
| 11 |
+
# "evaluate",
|
| 12 |
+
# "pycocotools",
|
| 13 |
+
# ]
|
| 14 |
+
# ///
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
RT-DETR Fine-tuning Script for Object Detection
|
| 18 |
+
Fine-tunes RT-DETR on the CPPE-5 dataset (medical PPE detection)
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
import os
|
| 22 |
+
import torch
|
| 23 |
+
import numpy as np
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from functools import partial
|
| 26 |
+
from dataclasses import dataclass
|
| 27 |
+
from typing import Dict, List, Any
|
| 28 |
+
|
| 29 |
+
from datasets import load_dataset
|
| 30 |
+
from transformers import (
|
| 31 |
+
RTDetrForObjectDetection,
|
| 32 |
+
RTDetrImageProcessor,
|
| 33 |
+
TrainingArguments,
|
| 34 |
+
Trainer,
|
| 35 |
+
)
|
| 36 |
+
from huggingface_hub import login
|
| 37 |
+
|
| 38 |
+
# Login
|
| 39 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 40 |
+
if hf_token:
|
| 41 |
+
login(token=hf_token)
|
| 42 |
+
print("Logged in to Hugging Face Hub")
|
| 43 |
+
|
| 44 |
+
# ============================================================================
|
| 45 |
+
# Configuration
|
| 46 |
+
# ============================================================================
|
| 47 |
+
MODEL_NAME = "PekingU/rtdetr_r50vd" # RT-DETR with ResNet-50 backbone
|
| 48 |
+
DATASET_NAME = "cppe-5" # Medical PPE detection dataset (5 classes)
|
| 49 |
+
OUTPUT_DIR = "rtdetr-cppe5-detection"
|
| 50 |
+
HUB_MODEL_ID = "Godsonntungi2/rtdetr-cppe5-detection"
|
| 51 |
+
|
| 52 |
+
# Training parameters (optimized for A10G 24GB)
|
| 53 |
+
BATCH_SIZE = 4
|
| 54 |
+
LEARNING_RATE = 1e-5
|
| 55 |
+
NUM_EPOCHS = 10
|
| 56 |
+
MAX_TRAIN_SAMPLES = 500 # Limit for demo (full dataset has ~1000)
|
| 57 |
+
|
| 58 |
+
print(f"Loading model: {MODEL_NAME}")
|
| 59 |
+
print(f"Dataset: {DATASET_NAME}")
|
| 60 |
+
|
| 61 |
+
# ============================================================================
|
| 62 |
+
# Load Dataset
|
| 63 |
+
# ============================================================================
|
| 64 |
+
print("\nLoading CPPE-5 dataset...")
|
| 65 |
+
dataset = load_dataset(DATASET_NAME)
|
| 66 |
+
print(f"Train samples: {len(dataset['train'])}")
|
| 67 |
+
print(f"Test samples: {len(dataset['test'])}")
|
| 68 |
+
|
| 69 |
+
# Limit samples for demo
|
| 70 |
+
if MAX_TRAIN_SAMPLES:
|
| 71 |
+
dataset["train"] = dataset["train"].select(range(min(MAX_TRAIN_SAMPLES, len(dataset["train"]))))
|
| 72 |
+
dataset["test"] = dataset["test"].select(range(min(100, len(dataset["test"]))))
|
| 73 |
+
print(f"Using {len(dataset['train'])} train, {len(dataset['test'])} test samples")
|
| 74 |
+
|
| 75 |
+
# Get categories
|
| 76 |
+
categories = dataset["train"].features["objects"].feature["category"].names
|
| 77 |
+
id2label = {i: label for i, label in enumerate(categories)}
|
| 78 |
+
label2id = {label: i for i, label in enumerate(categories)}
|
| 79 |
+
print(f"Classes: {categories}")
|
| 80 |
+
|
| 81 |
+
# ============================================================================
|
| 82 |
+
# Image Processor & Model
|
| 83 |
+
# ============================================================================
|
| 84 |
+
print("\nLoading image processor and model...")
|
| 85 |
+
image_processor = RTDetrImageProcessor.from_pretrained(MODEL_NAME)
|
| 86 |
+
|
| 87 |
+
model = RTDetrForObjectDetection.from_pretrained(
|
| 88 |
+
MODEL_NAME,
|
| 89 |
+
id2label=id2label,
|
| 90 |
+
label2id=label2id,
|
| 91 |
+
ignore_mismatched_sizes=True, # Important: class head size changes
|
| 92 |
+
)
|
| 93 |
+
print(f"Model loaded with {len(id2label)} classes")
|
| 94 |
+
|
| 95 |
+
# ============================================================================
|
| 96 |
+
# Data Preprocessing
|
| 97 |
+
# ============================================================================
|
| 98 |
+
def format_annotations(image_id, objects, image_size):
|
| 99 |
+
"""Convert dataset annotations to COCO format for RT-DETR"""
|
| 100 |
+
annotations = []
|
| 101 |
+
for i, (bbox, category) in enumerate(zip(objects["bbox"], objects["category"])):
|
| 102 |
+
# CPPE-5 bbox format: [x, y, width, height]
|
| 103 |
+
annotations.append({
|
| 104 |
+
"id": i,
|
| 105 |
+
"image_id": image_id,
|
| 106 |
+
"category_id": category,
|
| 107 |
+
"bbox": bbox,
|
| 108 |
+
"area": bbox[2] * bbox[3],
|
| 109 |
+
"iscrowd": 0,
|
| 110 |
+
})
|
| 111 |
+
return {
|
| 112 |
+
"image_id": image_id,
|
| 113 |
+
"annotations": annotations,
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
def transform_batch(examples, image_processor):
|
| 117 |
+
"""Transform a batch of examples for RT-DETR"""
|
| 118 |
+
images = []
|
| 119 |
+
annotations = []
|
| 120 |
+
|
| 121 |
+
for idx, (image, objects) in enumerate(zip(examples["image"], examples["objects"])):
|
| 122 |
+
# Convert to RGB if needed
|
| 123 |
+
if image.mode != "RGB":
|
| 124 |
+
image = image.convert("RGB")
|
| 125 |
+
images.append(image)
|
| 126 |
+
|
| 127 |
+
# Format annotations
|
| 128 |
+
anno = format_annotations(idx, objects, image.size)
|
| 129 |
+
annotations.append(anno)
|
| 130 |
+
|
| 131 |
+
# Process with image processor
|
| 132 |
+
result = image_processor(
|
| 133 |
+
images=images,
|
| 134 |
+
annotations=annotations,
|
| 135 |
+
return_tensors="pt",
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return result
|
| 139 |
+
|
| 140 |
+
# Apply transforms
|
| 141 |
+
print("\nPreparing datasets...")
|
| 142 |
+
transform_fn = partial(transform_batch, image_processor=image_processor)
|
| 143 |
+
|
| 144 |
+
# Process in batches
|
| 145 |
+
train_dataset = dataset["train"].with_transform(
|
| 146 |
+
lambda x: transform_fn(x)
|
| 147 |
+
)
|
| 148 |
+
eval_dataset = dataset["test"].with_transform(
|
| 149 |
+
lambda x: transform_fn(x)
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# ============================================================================
|
| 153 |
+
# Custom Collator
|
| 154 |
+
# ============================================================================
|
| 155 |
+
def collate_fn(batch):
|
| 156 |
+
"""Custom collate function for object detection"""
|
| 157 |
+
pixel_values = torch.stack([item["pixel_values"] for item in batch])
|
| 158 |
+
labels = [item["labels"] for item in batch]
|
| 159 |
+
|
| 160 |
+
return {
|
| 161 |
+
"pixel_values": pixel_values,
|
| 162 |
+
"labels": labels,
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
# ============================================================================
|
| 166 |
+
# Training Arguments
|
| 167 |
+
# ============================================================================
|
| 168 |
+
training_args = TrainingArguments(
|
| 169 |
+
output_dir=OUTPUT_DIR,
|
| 170 |
+
|
| 171 |
+
# Training params
|
| 172 |
+
num_train_epochs=NUM_EPOCHS,
|
| 173 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 174 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
| 175 |
+
learning_rate=LEARNING_RATE,
|
| 176 |
+
weight_decay=0.01,
|
| 177 |
+
|
| 178 |
+
# Optimization
|
| 179 |
+
lr_scheduler_type="cosine",
|
| 180 |
+
warmup_ratio=0.1,
|
| 181 |
+
fp16=True, # Mixed precision
|
| 182 |
+
gradient_accumulation_steps=4,
|
| 183 |
+
|
| 184 |
+
# Logging & saving
|
| 185 |
+
logging_steps=10,
|
| 186 |
+
eval_strategy="epoch",
|
| 187 |
+
save_strategy="epoch",
|
| 188 |
+
save_total_limit=2,
|
| 189 |
+
load_best_model_at_end=True,
|
| 190 |
+
metric_for_best_model="eval_loss",
|
| 191 |
+
|
| 192 |
+
# Hub
|
| 193 |
+
push_to_hub=True,
|
| 194 |
+
hub_model_id=HUB_MODEL_ID,
|
| 195 |
+
hub_strategy="end",
|
| 196 |
+
|
| 197 |
+
# Other
|
| 198 |
+
remove_unused_columns=False,
|
| 199 |
+
dataloader_num_workers=2,
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# ============================================================================
|
| 203 |
+
# Trainer
|
| 204 |
+
# ============================================================================
|
| 205 |
+
print("\nInitializing Trainer...")
|
| 206 |
+
trainer = Trainer(
|
| 207 |
+
model=model,
|
| 208 |
+
args=training_args,
|
| 209 |
+
train_dataset=train_dataset,
|
| 210 |
+
eval_dataset=eval_dataset,
|
| 211 |
+
processing_class=image_processor,
|
| 212 |
+
data_collator=collate_fn,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# ============================================================================
|
| 216 |
+
# Train!
|
| 217 |
+
# ============================================================================
|
| 218 |
+
print("\nStarting training...")
|
| 219 |
+
print(f" Epochs: {NUM_EPOCHS}")
|
| 220 |
+
print(f" Batch size: {BATCH_SIZE}")
|
| 221 |
+
print(f" Learning rate: {LEARNING_RATE}")
|
| 222 |
+
print("="*60)
|
| 223 |
+
|
| 224 |
+
trainer.train()
|
| 225 |
+
|
| 226 |
+
# ============================================================================
|
| 227 |
+
# Save & Push to Hub
|
| 228 |
+
# ============================================================================
|
| 229 |
+
print("\nSaving model...")
|
| 230 |
+
trainer.save_model()
|
| 231 |
+
image_processor.save_pretrained(OUTPUT_DIR)
|
| 232 |
+
|
| 233 |
+
print("\nPushing to Hub...")
|
| 234 |
+
trainer.push_to_hub()
|
| 235 |
+
|
| 236 |
+
print("\n" + "="*60)
|
| 237 |
+
print("Training complete!")
|
| 238 |
+
print(f"Model: https://huggingface.co/{HUB_MODEL_ID}")
|
| 239 |
+
print("="*60)
|
| 240 |
+
|
| 241 |
+
# ============================================================================
|
| 242 |
+
# Quick Inference Test
|
| 243 |
+
# ============================================================================
|
| 244 |
+
print("\nRunning quick inference test...")
|
| 245 |
+
test_image = dataset["test"][0]["image"]
|
| 246 |
+
if test_image.mode != "RGB":
|
| 247 |
+
test_image = test_image.convert("RGB")
|
| 248 |
+
|
| 249 |
+
inputs = image_processor(images=test_image, return_tensors="pt")
|
| 250 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 251 |
+
|
| 252 |
+
with torch.no_grad():
|
| 253 |
+
outputs = model(**inputs)
|
| 254 |
+
|
| 255 |
+
# Post-process
|
| 256 |
+
results = image_processor.post_process_object_detection(
|
| 257 |
+
outputs,
|
| 258 |
+
target_sizes=torch.tensor([test_image.size[::-1]]),
|
| 259 |
+
threshold=0.5
|
| 260 |
+
)[0]
|
| 261 |
+
|
| 262 |
+
print(f"Detected {len(results['labels'])} objects:")
|
| 263 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 264 |
+
print(f" - {id2label[label.item()]}: {score.item():.2f}")
|
| 265 |
+
|
| 266 |
+
print("\nDone!")
|