# /// script # dependencies = [ # "transformers>=4.40.0", # "torch", # "torchvision", # "datasets", # "albumentations", # "accelerate", # "huggingface_hub", # "Pillow", # "evaluate", # "pycocotools", # ] # /// """ RT-DETR Fine-tuning Script for Object Detection Fine-tunes RT-DETR on the CPPE-5 dataset (medical PPE detection) """ import os import torch import numpy as np from PIL import Image from functools import partial from dataclasses import dataclass from typing import Dict, List, Any from datasets import load_dataset from transformers import ( RTDetrForObjectDetection, RTDetrImageProcessor, TrainingArguments, Trainer, ) from huggingface_hub import login # Login hf_token = os.environ.get("HF_TOKEN") if hf_token: login(token=hf_token) print("Logged in to Hugging Face Hub") # ============================================================================ # Configuration # ============================================================================ MODEL_NAME = "PekingU/rtdetr_r50vd" # RT-DETR with ResNet-50 backbone DATASET_NAME = "cppe-5" # Medical PPE detection dataset (5 classes) OUTPUT_DIR = "rtdetr-cppe5-detection" HUB_MODEL_ID = "Godsonntungi2/rtdetr-cppe5-detection" # Training parameters (optimized for A10G 24GB) BATCH_SIZE = 4 LEARNING_RATE = 1e-5 NUM_EPOCHS = 10 MAX_TRAIN_SAMPLES = 500 # Limit for demo (full dataset has ~1000) print(f"Loading model: {MODEL_NAME}") print(f"Dataset: {DATASET_NAME}") # ============================================================================ # Load Dataset # ============================================================================ print("\nLoading CPPE-5 dataset...") dataset = load_dataset(DATASET_NAME) print(f"Train samples: {len(dataset['train'])}") print(f"Test samples: {len(dataset['test'])}") # Limit samples for demo if MAX_TRAIN_SAMPLES: dataset["train"] = dataset["train"].select(range(min(MAX_TRAIN_SAMPLES, len(dataset["train"])))) dataset["test"] = dataset["test"].select(range(min(100, len(dataset["test"])))) print(f"Using {len(dataset['train'])} train, {len(dataset['test'])} test samples") # Get categories - CPPE-5 uses ClassLabel in objects dict categories = dataset["train"].features["objects"]["category"].feature.names id2label = {i: label for i, label in enumerate(categories)} label2id = {label: i for i, label in enumerate(categories)} print(f"Classes: {categories}") # ============================================================================ # Image Processor & Model # ============================================================================ print("\nLoading image processor and model...") image_processor = RTDetrImageProcessor.from_pretrained(MODEL_NAME) model = RTDetrForObjectDetection.from_pretrained( MODEL_NAME, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True, # Important: class head size changes ) print(f"Model loaded with {len(id2label)} classes") # ============================================================================ # Data Preprocessing # ============================================================================ def format_annotations(image_id, objects, image_size): """Convert dataset annotations to COCO format for RT-DETR""" annotations = [] for i, (bbox, category) in enumerate(zip(objects["bbox"], objects["category"])): # CPPE-5 bbox format: [x, y, width, height] annotations.append({ "id": i, "image_id": image_id, "category_id": category, "bbox": bbox, "area": bbox[2] * bbox[3], "iscrowd": 0, }) return { "image_id": image_id, "annotations": annotations, } def transform_batch(examples, image_processor): """Transform a batch of examples for RT-DETR""" images = [] annotations = [] for idx, (image, objects) in enumerate(zip(examples["image"], examples["objects"])): # Convert to RGB if needed if image.mode != "RGB": image = image.convert("RGB") images.append(image) # Format annotations anno = format_annotations(idx, objects, image.size) annotations.append(anno) # Process with image processor result = image_processor( images=images, annotations=annotations, return_tensors="pt", ) return result # Apply transforms print("\nPreparing datasets...") transform_fn = partial(transform_batch, image_processor=image_processor) # Process in batches train_dataset = dataset["train"].with_transform( lambda x: transform_fn(x) ) eval_dataset = dataset["test"].with_transform( lambda x: transform_fn(x) ) # ============================================================================ # Custom Collator # ============================================================================ def collate_fn(batch): """Custom collate function for object detection""" pixel_values = torch.stack([item["pixel_values"] for item in batch]) labels = [item["labels"] for item in batch] return { "pixel_values": pixel_values, "labels": labels, } # ============================================================================ # Training Arguments # ============================================================================ training_args = TrainingArguments( output_dir=OUTPUT_DIR, # Training params num_train_epochs=NUM_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE, weight_decay=0.01, # Optimization lr_scheduler_type="cosine", warmup_ratio=0.1, fp16=True, # Mixed precision gradient_accumulation_steps=4, # Logging & saving logging_steps=10, eval_strategy="epoch", save_strategy="epoch", save_total_limit=2, load_best_model_at_end=True, metric_for_best_model="eval_loss", # Hub push_to_hub=True, hub_model_id=HUB_MODEL_ID, hub_strategy="end", # Other remove_unused_columns=False, dataloader_num_workers=2, ) # ============================================================================ # Trainer # ============================================================================ print("\nInitializing Trainer...") trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=image_processor, data_collator=collate_fn, ) # ============================================================================ # Train! # ============================================================================ print("\nStarting training...") print(f" Epochs: {NUM_EPOCHS}") print(f" Batch size: {BATCH_SIZE}") print(f" Learning rate: {LEARNING_RATE}") print("="*60) trainer.train() # ============================================================================ # Save & Push to Hub # ============================================================================ print("\nSaving model...") trainer.save_model() image_processor.save_pretrained(OUTPUT_DIR) print("\nPushing to Hub...") trainer.push_to_hub() print("\n" + "="*60) print("Training complete!") print(f"Model: https://huggingface.co/{HUB_MODEL_ID}") print("="*60) # ============================================================================ # Quick Inference Test # ============================================================================ print("\nRunning quick inference test...") test_image = dataset["test"][0]["image"] if test_image.mode != "RGB": test_image = test_image.convert("RGB") inputs = image_processor(images=test_image, return_tensors="pt") inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) # Post-process results = image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([test_image.size[::-1]]), threshold=0.5 )[0] print(f"Detected {len(results['labels'])} objects:") for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): print(f" - {id2label[label.item()]}: {score.item():.2f}") print("\nDone!")